## **Supporting Information**

## Cationic Copolymerization of Isosorbide Towards Value-added Poly(vinyl ethers)

## Robert J. Kieber III, Cuneyt Ozkardes, Natalie Sanchez, and Justin G. Kennemur<sup>a</sup>\*

<sup>a</sup> Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32303 USA

| Figure S1: <sup>1</sup> H NMR of 1                                                                  | S2  |
|-----------------------------------------------------------------------------------------------------|-----|
| Figure S2: <sup>13</sup> C NMR of 1                                                                 | S3  |
| Figure S3: <sup>1</sup> H NMR of 2                                                                  | S4  |
| Figure S4: <sup>13</sup> C NMR of 2                                                                 | S5  |
| Figure S5: <sup>1</sup> H NMR of 3                                                                  | S6  |
| Figure S6: <sup>1</sup> H- <sup>1</sup> H COSY of 3                                                 | S7  |
| <b>Figure S7:</b> <sup>13</sup> C NMR of <b>3</b>                                                   | S8  |
| <b>Figure S8:</b> <sup>1</sup> H- <sup>13</sup> C HMQC of <b>3</b>                                  | S9  |
| Scheme S1: Synthesis of RAFT agent 4                                                                | S9  |
| Figure S9: <sup>1</sup> H NMR of 4                                                                  | S10 |
| Figure S10: <sup>13</sup> C NMR of 4                                                                | S11 |
| <b>Figure S11:</b> <sup>1</sup> H NMR of copolymer ( $f_3 = 0.4$ )                                  | S12 |
| <b>Figure S12:</b> <sup>1</sup> H- <sup>1</sup> H COSY of copolymer ( $f_3 = 0.4$ )                 | S13 |
| <b>Figure S13:</b> <sup>13</sup> C NMR of copolymer ( $f_3 = 0.4$ )                                 | S14 |
| <b>Figure S14:</b> <sup>1</sup> H- <sup>13</sup> C HMQC NMR of copolymer ( $f_3 = 0.4$ )            | S15 |
| <b>Figure S15:</b> DEPT overlay of copolymer ( $f_3 = 0.4$ )                                        | S16 |
| Figure S16: <sup>1</sup> H NMR of (S)-2-((tert-butyldimethylsilyl)oxy)-2-(furan-2-yl)ethan-1-ol, 5. | S17 |
| Scheme S2: Ring opening and aromatization of 3 to 5 using PTSA                                      | S17 |

| Figure S17: <sup>1</sup> H NMR of homopolymerization of <b>3</b>                        |     |  |  |  |
|-----------------------------------------------------------------------------------------|-----|--|--|--|
| <b>Figure S18:</b> Plot of $F_3$ vs $f_3$                                               | S18 |  |  |  |
| <b>Figure S19:</b> Plot of $M_{n, theo}$ vs $M_{n, exp}$                                | S19 |  |  |  |
| <b>Table S1:</b> Table of $[\alpha]$ of copolymers                                      | S20 |  |  |  |
| <b>Equation S1:</b> Calculation of $w_3$ of copolymers                                  | S20 |  |  |  |
| Figure S20: <sup>1</sup> H NMR of crude aliquot of P33                                  | S22 |  |  |  |
| Figure S21: <sup>1</sup> H NMR of P33 highlighting furan end groups from chain transfer | S23 |  |  |  |
| Figure S22: <sup>1</sup> H NMR of IBVE-HCl adduct                                       | S24 |  |  |  |
| Scheme S3: Synthesis of 6                                                               | S24 |  |  |  |
| Figure S23: <sup>1</sup> H NMR of 6                                                     | S25 |  |  |  |
| Figure S24: <sup>13</sup> C NMR of 6                                                    | S26 |  |  |  |
| Figure S25: DSC thermograms of copolymers from Lewis acid systems                       | S27 |  |  |  |
| Figure S26: <sup>1</sup> H NMR of crude L8                                              | S28 |  |  |  |



**Figure S1:** <sup>1</sup>H NMR of (3S,3aR,6S,6aS)-6-chlorohexahydrofuro[3,2-b]furan-3-ol (1) (600 MHz, CDCl<sub>3</sub>, 25 °C)



**Figure S2:** <sup>13</sup>C NMR of (1) (151 MHz, CDCl<sub>3</sub>, 25 °C)



**Figure S3:** <sup>1</sup>H NMR of (3S,3aR,6aR)-2,3,3a,6a-tetrahydrofuro[3,2-b]furan-3-ol (**2**) (600 MHz, CDCl<sub>3</sub>, 25 °C)



160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 **Figure S4:** <sup>13</sup>C NMR of (2) (151 MHz, CDCl<sub>3</sub>, 25 °C)



**Figure S5:** <sup>1</sup>H NMR of tert-butyldimethyl(((3S,3aS,6aR)-2,3,3a,6a-tetrahydrofuro[3,2-b]furan-3-yl)oxy)silane (**3**) (600 MHz, CDCl<sub>3</sub>, 25 °C). Asterisk (\*) denotes acetone peak





**Figure S7:** <sup>13</sup>C NMR of **3** (151 MHz, CDCl<sub>3</sub>, 25 °C)



Figure S8: <sup>1</sup>H-<sup>13</sup>C HMQC of 3 (600 MHz, 151 MHz, CDCl<sub>3</sub>, 25 °C)

Scheme S1: Synthesis of RAFT agent, S-1-isobutoxylethyl-S'-ethyl trithiocarbonate (4)





**Figure S9:** <sup>1</sup>H NMR of **4** (600 MHz, CDCl<sub>3</sub>, 25 °C)



50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 Figure S10: <sup>13</sup>C NMR of 4 (151 MHz, CDCl<sub>3</sub>, 25 °C)



Figure S11: <sup>1</sup>H NMR of P33 (600 MHz, CDCl<sub>3</sub>, 25 °C)





**Figure S13:** <sup>13</sup>C NMR of P33 (151 MHz, CDCl<sub>3</sub>, 25 °C)



Figure S14: <sup>1</sup>H-<sup>13</sup>C HMQC NMR of P33 (600 MHz, 151 MHz, CDCl<sub>3</sub>, 25 °C)





**Figure S16:** <sup>1</sup>H NMR of (*S*)-2-((tert-butyldimethylsilyl)oxy)-2-(furan-2-yl)ethan-1-ol (**5**) (600 MHz, CDCl<sub>3</sub>, 25 °C)

Scheme S2: Ring opening of 3 using pyridinium *p*-toluenesulfonate (PTSA) and proposed mechanism<sup>1-2</sup>





**Figure S17:** <sup>1</sup>H NMR of crude product after homopolymerization of **3** using photo-initiated RAFT polymerization as detailed in the main text, illustrating near quantitative conversion to **5** (600 MHz, CDCl<sub>3</sub>, 25 °C). This NMR is nearly identical to that obtained from polymerization attempts using traditional living conditions with Lewis acids



**Figure S18:** Plot of incorporation of **3** in the copolymer ( $F_3$ ) vs molar feed ratio of **3** ( $f_3$ ) showing the incomplete incorporation of **3** into the polymer compared to what was in the feed



**Figure S19:** Plot of theoretical number average molar mass,  $M_{n \text{ (theo)}}$  (left y-axis, filled squares) compared to experimentally determined number average molar mass,  $M_{n \text{ (SEC)}}$  obtained from SEC analysis (right y-axis, open circles) for the copolymers as a function of feed ratio  $f_3$ 

| Sample  | 147            | $[\alpha]_{589}^{25}$ (° mL g <sup>-1</sup> | С                      | <i>c</i> (P3)  | $[\alpha]_{589}^{25}(P3)$ |
|---------|----------------|---------------------------------------------|------------------------|----------------|---------------------------|
| Sample  | W <sub>3</sub> | ( mL g<br>dm <sup>-1</sup> )                | (mg mL <sup>-1</sup> ) | $(mg mL^{-1})$ | $g^{-1} dm^{-1}$          |
| P4      | 0.096          | -18.39                                      | 9.95                   | 0.96           | -191.52                   |
|         |                | -17.74                                      | 9.55                   | 0.92           | -184.80                   |
| P8      | 0.170          | -23.67                                      | 10.65                  | 1.81           | -139.29                   |
|         |                | -31.68                                      | 7.55                   | 1.28           | -186.44                   |
| P13     | 0.257          | -36.27                                      | 10.25                  | 2.63           | -141.20                   |
|         |                | -35.93                                      | 12.05                  | 3.10           | -139.85                   |
| P17     | 0.331          | -51.47                                      | 11.60                  | 3.84           | -155.32                   |
|         |                | -55.40                                      | 9.05                   | 3.00           | -167.18                   |
| P26     | 0.460          | -71.78                                      | 11.44                  | 5.26           | -156.22                   |
|         |                | -74.15                                      | 10.12                  | 4.66           | -161.37                   |
| P33     | 0.544          | -76.28                                      | 11.1                   | 6.04           | -140.27                   |
|         |                | -75.57                                      | 15.6                   | 8.49           | -138.98                   |
| AVERAGE | -              | -                                           | -                      | -              | -159                      |
| Std Dev | -              | -                                           | -                      | -              | 20                        |

**Table S1:** Table of duplicate polarimetry experiments on copolymers with different molar fraction of **3** ( $F_3$ ) along with the calculated weight fraction of **3** ( $w_3$ ), specific optical rotation of the copolymers [ $\alpha$ ], and specific optical rotations normalized to  $w_3$  [ $\alpha$ ]<sub>P3</sub> = [ $\alpha$ ] x  $w_3$ .

**Equation S1:** Calculation of weight fraction of **3** ( $w_3$ ) from mol fraction in the polymer (F) and repeat unit molecular weight (M)

repeat unit molecular weight (M)  $w_3 = \frac{F_3 M_3}{F_3 M_3 + F_{IBVE} M_{IBVE}}$ 



**Figure S20:** <sup>1</sup>H NMR of crude aliquot of P33 indicating near complete conversion for IBVE (distinct monomer peaks in blue box at  $\delta \sim 4.14$  and 3.94 ppm) as well as for THFF-TBDMS (monomer peak in green box  $\delta \sim 6.48$  ppm) (400 MHz, CDCl<sub>3</sub>, 25 °C)



**Figure S21:** <sup>1</sup>H NMR of P33 showing presence of furanyl peaks post-precipitation (600 MHz, CDCl<sub>3</sub>, 25 °C)



Scheme S3: Synthesis of tetrahydrofuran-2-yl acetate (6) initiator







Figure S24: <sup>13</sup>C NMR of THFA (600 MHz, CDCl<sub>3</sub>, 25 °C)



**Figure S25:** DSC thermogram of polymers (exo up) synthesized from traditional cationic methods, with  $F_3$  increasing down the graph. Polymers were heated from -60 °C to 100 °C at a rate of 10 °C min<sup>-1</sup>. Data was obtained from the third heat



**Figure S26:** <sup>1</sup>H NMR of L8 zoomed in on the furanyl region, showing clear appearance of significant portions of **5** as well as the CTA after aqueous workup (before precipitation). Large peak ~5.3 ppm is DCM not completely removed via rotary evaporation (600 MHz,  $CDCl_3$ , 25 °C).

1. Berini, C.; Lavergne, A.; Molinier, V.; Capet, F.; Deniau, E.; Aubry, J. M., Iodoetherification of Isosorbide-Derived Glycals: Access to a Variety of O-Alkyl or O-Aryl Isosorbide Derivatives. *Eur. J. Org. Chem.* **2013**, *2013* (10), 1937-1949.

2. Paolucci, C.; Rosini, G., Approach to a better understanding and modeling of (S)-dihydrofuran-2-yl, (S)-tetrahydrofuran-2-yl-, and furan-2-yl- $\beta$ -dialkylaminoethanol ligands for enantioselective alkylation. *Tetrahedron: Asymmetry* **2007**, *18* (24), 2923-2946.