Supporting Information:

Degradable Poly(ethylene oxide) Through Metal-Free Copolymerization of Ethylene Oxide with L-Lactide

Jobi Kodiyan Varghese, [†] Nikos Hadjichristidis,[‡] Yves Gnanou, *,[†] and Xiaoshuang Feng*,[†]

Corresponding author: <u>yves.gnanou@kaust.edu.sa; fxs101@gmail.com</u>

CONTENTS:

Figure S1: ¹³ C NMR spectrum of P(EO- <i>co</i> -LLA) random copolymer (entry 9 of Table 1)S2
Figure S2 : HSQC spectrum of P(EO- <i>co</i> -LLA) random copolymer (entry 9 of Table 1)S3
Figure S3 : HMBC spectrum of P(EO- <i>co</i> -LLA) random copolymer (entry 9 of Table 1)S4
Figure S4 : DOSY spectrum of P(EO- <i>co</i> -LLA) random copolymer (entry 9 of Table 1)S5
Figure S5. IR Data of (entry 21, Table 1) showing azide incorporation on copolymer
Reactivity Ratio Calculation by Non terminal Model of BSL
Reactivity Ratio Calculation by Terminal Model of MLS11
Figure S6. Terminal model of ML for the determination of reactivity ratios of copolymerization
of EO and LLA initiated with t-BuP ₄ /PMBA in the presence of triethylborane (Entry 1,2,3,4,5 of
Table 2)

Figure S7. Terminal model of ML for the determination of reactivity ratios of copolymerization
of EO and LLA initiated with TBACl in the presence of triethylborane (Entry 6,7,8,9,10 of Table
2)
Figure S8. Terminal model of ML for the determination of reactivity ratios of copolymerization
of EO and LLA initiated with PPNCl in the presence of triethylborane (Entry 11,12,13,14,15 of
Table 2)
Figure S9: Represent ¹ H NMR spectrum of P(EO- <i>co</i> -LLA) random copolymer after degradation
(entry 12 of Table 1)

Figure S1: ¹³C NMR spectrum of P(EO-*co*-LLA) random copolymer (entry 9 of Table 1).

Figure S2: HSQC spectrum of P(EO-*co*-LLA) random copolymer (entry 9 of Table 1).

Figure S3: HMBC spectrum of P(EO-co-LLA) random copolymer (entry 9 of Table 1).

Figure S4: DOSY spectrum of P(EO-*co*-LLA) random copolymer (entry 9 of Table 1).

Figure S5: IR Data of showing azide incorporation on copolymer (entry 21, Table 1).

Reactivity Ratio Calculation by Non terminal Model of BSL¹

$$r_{a} = \frac{ln^{[ro]} \left[\frac{\left[1 - P_{ab} - (1 - n_{a})(1 - P_{b})\right]}{n_{a}}\right]}{ln(1 - P_{b})}....(1)$$

$$r_{b} = \frac{ln^{\text{im}}\left[\frac{\left[(1 - P_{ab} - n_{a}(1 - P_{a})\right]}{1 - n_{a}}\right]}{ln(1 - P_{a})}.$$
(2)

For PMBA/ P₄ system

(Entry 1, Table 2)

 $[EO]_0 = 6.1 \qquad \begin{array}{l} n_a = 0.87 \quad \text{EO conversion} \ P_a = 0.28 \quad \text{LLA conversion} \ P_b = 0.055 \\ [LLA]_0 = 0.9 \qquad \begin{array}{l} n_b = 0.13 \quad P_{ab} = 0.25 \quad \text{Ester cont ent (^1HNMR)} = 2.50\% \\ \text{On applying this values in equations (1) \& (2)} \end{array}$

$$r_a = 5.78$$
 $r_b = 0.15$

(Entry 2, Table 2)

 $[EO]_0 = 6.1 \qquad \begin{array}{l} n_a = 0.87 \quad \text{EO conversion} \ {}^P_a = 0.44 \quad \text{LLA conversion} \ {}^P_b = 0.091 \\ [LLA]_0 = 0.9 \qquad \begin{array}{l} n_b = 0.13 \quad {}^P_{ab} = 0.39 \quad \text{Ester content} \ (^1\text{HNMR}) = 3.12\% \\ \text{On applying this values in equations} \ (1) \ \& \ (2) \end{array}$

 $r_a = 5.97$ $r_b = 0.1$

(Entry 3, Table 2) $[EO]_0 = 6.1$ $n_a = 0.87$ EO conversion $P_a = 0.65$ LLA conversion $P_b = 0.18$ $[LLA]_0 = 0.9$ $n_b = 0.13$ $P_{ab} = 0.59$ Ester content (¹HNMR) = 4.12%

7

On applying this values in equations (1) & (2)

$$r_a = 5.30$$
 $r_b = 0.2$

(Entry 4, Table 2) $[EO]_0 = 6.1 \qquad n_a = 0.87 \qquad \text{EO conversion} \ {}^{P_a} = 0.775 \qquad \text{LLA conversion} \ {}^{P_b} = 0.27$ $[LLA]_0 = 0.9 \qquad n_b = 0.13 \qquad {}^{P_{ab}} = 0.71 \qquad \text{Ester content} \ (^1\text{HNMR}) = 4.98\%$ On applying this values in equations (1) & (2) ${}^{r_a} = 4.75 \quad {}^{r_b} = 0.22$

(Entry 5, Table 2)

 $[EO]_0 = 6.1$ $n_a = 0.87$ EO conversion $P_a = 0.99$ LLA conversion $P_b = 0.52$ $[LLA]_0 = 0.9$ $n_b = 0.13$ $P_{ab} = 0.93$ Ester content (1HNMR) = 6.09%

On applying this values in equations (1) & (2)

 $r_a = 5.07$ $r_b = 0.19$

On taking average

 $r_a = 5.37 \pm 0.40$ $r_b = 0.17 \pm 0.04$

For TBACl System

(Entry 6, Table 2)

EO]_0 = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.44$ LLA conversion $P_b = 0.21$ [LLA]_0 = 0.69 $n_b = 0.17$ $P_{ab} = 0.4$ Ester content (¹HNMR) = 9.15%

On applying this values in equations (1) & (2)

 $r_a = 2.45$ $r_b = 0.4$

(Entry 7, Table 2)

EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.58$ LLA conversion $P_b = 0.32$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.54$ Ester content (¹HNMR) = 10.1% On applying this values in equations (1) & (2)

$$r_a = 2.28$$
 $r_b = 0.42$

(Entry 8, Table 2) EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.72$ LLA conversion $P_b = 0.45$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.67$ Ester content (¹HNMR) = 11.5% On applying this values in equations (1) & (2) $r_a = 2.1$ $r_b = 0.44$

(Entry 9, Table 2) EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.8$ LLA conversion $P_b = 0.57$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.76$ Ester content (¹HNMR) = 13.1% On applying this values in equations (1) & (2) $r_a = 1.9$ $r_b = 0.52$

(Entry 10, Table 2)

EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.89$ LLA conversion $P_b = 0.75$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.87$ Ester content (¹HNMR) = 14.5% On applying this values in equations (1) & (2)

 $r_a = 1.62$ $r_b = 0.67$

On taking average

 $r_a = 2.07 \pm 0.25 \ r_b = 0.49 \pm 0.08$

For PPNCl System

(Entry 11, Table 2)

EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.56$ LLA conversion $P_b = 0.1$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.48$ Ester content (¹HNMR) = 3.52% On applying this values in equations (1) & (2) $r_a = 7.75$ $r_b = 0.11$ (Entry 12, Table 2) EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.73$ LLA conversion $P_b = 0.17$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.64$ Ester content (¹HNMR) = 4.50% On applying this values in equations (1) & (2) $r_a = 7.15$ $r_b = 0.17$

(Entry 13, Table 2)

EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.855$ LLA conversion $P_b = 0.267$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.75$ Ester content (¹HNMR) = 6.03% On applying this values in equations (1) & (2) $r_a = 6.08$ $r_b = 0.14$

(Entry 14, Table 2)

EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.937$ LLA conversion $P_b = 0.34$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.83$ Ester content (¹HNMR) = 7.12% On applying this values in equations (1) & (2) $r_a = 6.29$ $r_b = 0.13$ (Entry 15, Table 2) EO]₀ = 3.4 $n_a = 0.83$ EO conversion $P_a = 0.96$ LLA conversion $P_b = 0.41$ [LLA]₀ = 0.69 $n_b = 0.17$ $P_{ab} = 0.86$ Ester content (¹HNMR) = 8.05% On applying this values in equations (1) & (2) $r_a = 5.78$ $r_b = 0.14$ On taking average

 $r_a = 6.61 \pm 0.67$ $r_b = 0.14 \pm 0.01$

Reactivity Ratio Calculation by Terminal Model of Meyer Lowry ²

$$conv. = 1 - \left(\frac{f_1}{f_1^0}\right)^{r_2/(1-r_2)} \left(\frac{1-f_1}{1-f_1^0}\right)^{r_1/(1-r_1)} \times \left(\frac{f_1(2-r_1-r_2)-r_2-1}{f_1^0(2-r_1-r_2)-r_2-1}\right)^{(r_1r_2-1)/(1-r_1)(1-r_2)}$$

Assuming copolymer is of pure gradient character, $r_1r_2 = 1$, the last term in above equation equals to 1.

$$conv. = 1 - \left(\frac{f_1}{f_1^0}\right)^{r_2/(1-r_2)} \left(\frac{1-f_1}{1-f_1^0}\right)^{r_1/(1-r_1)}$$
$$1 - conv. = \left(\frac{f_1}{f_1^0}\right)^{r_2/(1-r_2)} \left(\frac{1-f_1}{1-f_1^0}\right)^{r_1/(1-r_1)}$$

Take logarithm for both sides,

$$log^{[m]}(1 - conv.) = \frac{r_2}{1 - r_2} log\left(\frac{f_1}{f_1^0}\right) + \frac{r_1}{1 - r_1} log^{[m]}(\frac{1 - f_1}{1 - f_1^0})$$

Replace r_1 by $1/r_2$,

$$\log (1 - conv.) = \frac{r_2}{1 - r_2} \log \left(\frac{f_1}{f_1^0}\right) + \frac{1}{r_2 - 1} \log \frac{1 - f_1}{1 - f_1^0}$$

Figure S6: Terminal model of ML for the determination of reactivity ratios of copolymerization of EO and LLA initiated with t-BuP₄/PMBA in the presence of triethylborane (Entry 1,2,3,4,5 of Table 2).

Figure S7: Terminal model of ML for the determination of reactivity ratios of copolymerization of EO and LLA initiated with TBACl in the presence of triethylborane (Entry 6,7,8,9,10 of Table 2).

Figure S8: Terminal model of ML for the determination of reactivity ratios of copolymerization of EO and LLA initiated with PPNCl in the presence of triethylborane (Entry 11,12,13,14,15 of Table 2).

Figure S9: Represent ¹H NMR spectrum of P(EO-*co*-LLA) random copolymer after degradation (entry 12 of Table 1).

1. B. S. Beckingham, G. E. Sanoja and N. A. Lynd, Macromolecules, 2015, 48, 6922-6930.

2. (a) N. A. Lynd, R. C. Ferrier and B. S. Beckingham, *Macromolecules*, 2019, 52, 2277-2285;
(b) V. E. Meyer and G. G. Lowry, *J. Polym. Sci. Part A: Gen. Pap.*, 1965, 3, 2843-2851;
(c) F. T. Wall, *J. Am. Chem. Soc.*, 1944, 66, 2050-2057.