Supporting Information

## Thermo-Tunable Colorimetric Detection of Mercury(II) Ions Driven by Temperature-Dependent Assembly and Disassembly of a Block Copolymer

*Hye-Jin Kim*<sup>*a,b*</sup> *and Hyung-il Lee*<sup>*a,\**</sup>

<sup>a</sup> Department of Chemistry, University of Ulsan, Ulsan, 44776, Korea

<sup>b</sup> Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea

Research Institute of Chemical Technology, 45 Jongga-ro, Jung-gu, Ulsan44412, Republic of Korea

<sup>\*</sup> Corresponding Author : <a href="mailto:sims0904@ulsan.ac.kr">sims0904@ulsan.ac.kr</a>



**Figure S1.** Average hydrodynamic diameters of 0.010 wt%, 0.020 wt%, and 0.025 wt% aqueous solution of P1 as a function of temperature.



**Figure S2.** Average hydrodynamic diameters of 0.025 wt% aqueous solution of P1 as a function of temperature a) at pH 4.5 and b) pH 6.0.



**Figure S3.** Linear regression curve of P1 aqueous solutions with increasing concentration of mercury(II) ions at 25 °C (LOD = 0.031 mM).



**Figure S4.** UV-vis absorption spectra of 0.025 wt % micellar solution of P1 (48  $\mu$ M of oxime units) up to the addition of 38.0 mM of mercury(II) ions in aqueous solution at 60 °C.



**Figure S5.** Linear regression curve of P1 aqueous solutions with increasing concentration of mercury(II) at 60 °C (LOD = 3.13 mM).





**Figure S6.** (a~i) UV-vis absorption spectra of aqueous solutions of P1 (48  $\mu$ M) with various concentrations of different metal cations (0.44 mM) at 25 °C.