Electronic supplementary information for: "From *n*-Butyl Acrylate Arrhenius Parameters for Backbiting and Tertiary Propagation to β scission via Stepwise Pulsed Laser Polymerization"

Anil B. Vir,¹ Yoshi W. Marien,¹ Paul H.M. Van Steenberge,¹ Christopher Barner-Kowollik,^{2,3,*} Marie-Françoise Reyniers,¹ Guy B. Marin,¹ Dagmar R. D'hooge^{1,4,*}

¹Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium.

²School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia

³Macromolecular Architectures, Institut für Technische Chemie and Polymerchemie,

Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany

⁴Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Gent, Belgium

*Corresponding author: <u>dagmar.dhooge@ugent.be</u>, <u>christopher.barnerkowollik@qut.edu.au</u>

Contents

S1 Experimental details	. 2
S2 Correction for SEC broadening	. 4
S3 Kinetic modeling details	. 4
S3.1 Photodissociation kinetics	6
S3.2 Chain length dependencies	6
S4 Relevance of regression analysis	.7

S1 Experimental details

The pulsed laser polymerization (PLP) experiments combined with size exclusion chromatography (SEC) analysis were carried out for a "low" (303-323 K) and "high" temperature (383-413 K) range selecting *n*-butyl acrylate (*n*BuA) as monomer. In all PLP experiments the conversion of *n*BuA was maintained low (*e.g.* 2-3%) by varying the number of pulses. The details of the PLP experimental conditions, *i.e.* frequency, pulse number and solvent volume fraction, in the "low" and "high" temperature range are summarized in **Table S1** and **Table S2** respectively. **Table S3** and **Table S4** contain the $k_{p,app}$ data.

Frequency											
(Hz)		Pulse Number									
	Ter	Temperature = 303 KTemperature = 313 KTemperature = 323 K									
	5	Solvent fra	ction	5	Solvent fra	ction		Solvent frac	tion		
	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75		
10	50	65	90	35	60	80	30	55	70		
20	60	75	100	45	70	90	40	70	80		
30	70	85	120	55	80	105	50	85	95		
40	80	95	140	65	90	120	60	100	110		
50	90	105	160	75	100	135	70	115	125		
60	100	115	180	85	110	150	80	130	140		

Table S1: Low temperature (303-323 K) PLP experimental details

 Table S2: High temperature (383-413 K) PLP experimental details

Frequency													
(Hz)		Pulse Number											
	Temp	Temperature = 383 KTemperature = 393 KTemperature = 403 KTemperature = 413 K											
	Sol	vent frac	tion	So	lvent fra	ction	So	lvent fra	ction	Sol	vent frac	tion	
	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75	
1	15	20	24	14	18	22	12	16	18	10	14	18	
10	35	45	55	30	40	50	25	30	35	20	25	30	
20	45	55	65	40	50	60	35	40	45	30	35	40	
30	55	65	75	50	60	70	45	50	55	40	45	50	
40	65	75	85	60	70	80	55	60	65	50	55	60	
50	75	85	95	70	80	90	65	70	75	60	65	70	

Hz)		$k_{\mathrm{p,app}} (\mathrm{L}\;\mathrm{mol}^{-1}\;\mathrm{s}^{-1})$											
lcy (H		$\mathbf{T} = 303$	K		$\mathbf{T}=313$	K		$\mathbf{T}=323$	K				
duen	Sol	lvent fra	ction	Sol	vent fra	ction	Solvent fraction						
Fre	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75				
10	3404	3175	2468	4442	3477	2825	5017	3886	3043				
20	5272	3900	3297	5784	4605	3719	6749	5366	4038				
30	6242	4971	3877	7174	5478	4457	7717	6175	5030				
40	6994	6134	4990	7593	6602	5176	7916	6996	5737				
50	7370	6725	5909	8114	7520	6213	8599	8031	6917				
60	8361	7820	6728	8872	7972	6958	9258	8786	7458				

Table S3: $k_{p, app}$ obtained using first inflection point data from low temperature (303-323 K) PLP experiments

Table S4: $k_{p, app}$ obtained using first inflection point data from high temperature (383-413 K) PLP experiments

(zF	$k_{\rm p,app} ({\rm L~mol^{-1}~s^{-1}})$													
icy (I	T = 383 K				T = 393 K			' = 403	K	Т	T = 413 K			
duen	Solver	nt fract	tion	Solvent fraction			Solvent fraction			Solver	Solvent fraction			
Fre	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75	0	0.5	0.75		
10	2172	1586	1296	1619	1170	914	1187	854	796	829	594	534		
20	4427	2852	2158	2676	2208	1938	1997	1914	1350	1513	1378	1097		
30	5416	4467	2991	3967	2783	2320	2839	2351	2093	1947	1870	1920		
40	6060	4778	4143	4936	3865	3289	3331	3041	2978	2566	2402	2290		
50	7366	5667	5189	5637	4706	4276	4035	3422	3927	3166	2921	2733		

S2 Correction for SEC broadening

A correction for SEC broadening is considered based on the method proposed by Buback *et al.*¹ For more details readers are referred to our previous work.² The log-MMD after SEC broadening is calculated as:

$$w_{SEC}(\log M) = \frac{1}{\left(2\pi\right)^{0.5} \left(\sigma_{v}b\right)} \int_{0}^{+\infty} \exp\left(-\frac{\left(\log(M) - \log(\tilde{M})\right)^{2}}{2\left(\sigma_{v}b\right)^{2}}\right) w(\log \tilde{M}) d\log(\tilde{M})$$
(S1)

In this work $(\sigma_v b) = 0.04$ is used based on literature data.^{3,4}

S3 Kinetic modeling details

The reaction scheme and associated Arrhenius parameters for PLP of *n*-butyl acrylate (*n*BuA) used in the kinetic Monte Carlo (*k*MC) simulations are summarized in **Table S5**. Literaturebased parameters are used for all reactions, except for backbiting, tertiary propagation and β scission as these are determined in the current work. Backbiting and tertiary propagation Arrhenius parameters are determined via regression to "low" temperature (303-323 K) $k_{p,app}$ data. At these temperatures the β -scission reactions indicated by the dashed red box in Table S5 can be neglected. Arrhenius parameters for β -scission are determined in a next step via regression analysis to "high" temperature (383-413 K) $k_{p,app}$ data, using the previously determined Arrhenius parameters for backbiting and tertiary propagation as input. Based on our previous work thermal self-initiation and macropropagation reactions are neglected.⁵

Entry	Reaction	Equation	A	E_{Λ} .	Reference
			[(L mol ⁻¹)s ⁻¹]	[kJ mol ⁻¹]	
1	photo-dissociation	$I_2 \xrightarrow{h\nu} R_{0,e}^I + R_{0,e}^{II}$			6
2	chain initiation	$R_{0,e}^{I/III/IV} + M \xrightarrow{k_{\text{p,UIII/IV}}} R_{1,e}$	2.4×10^{8}	17.9	17,b
3	propagation ^c	$R_{i,e} + M \xrightarrow{k_{p,e}} R_{i+1,e}$	2.2×10^{7}	17.9	7
4		$R_{i,m} + M \xrightarrow{k_{p,m}} R_{i+1,e}$	1.94×10 ⁶	30.1	this work
5	backbiting	$R_{i,e} \xrightarrow{k_{bb}} R_{i,m} i \ge 3$	5.38×10 ⁷	30.6	this work
6	β -scission of MCR ^{<i>i</i>}	$R_{i,m} \xrightarrow{k_{\beta}} MM_{3} + R_{i-3,e}$	1.5×10 ⁹	63.9	this work
7		$R_{i,m} \xrightarrow{k_{\beta}} MM_{i-2} + R_{2,e}$	1.5×10 ⁹	63.9	this work
8	β -scission of dimethoxy benzyl radical	$R_{0,e}^{II} \xrightarrow{k_{\beta o}} R_{0,e}^{III} + \mathrm{MeBez}^{h}$	2.0×10 ¹³	61.8	8
9	chain transfer to	$R_{i,e} + M \xrightarrow{k_{\text{trM},e}} P_i + R_{0,e}^{IV}$	2.9×10^{5}	32.6	9
10		$R_{i,m} + M \xrightarrow{k_{trM,m}} P_i + R_{0,e}^{IV}$	2.0×10 ⁵	46.1	9
11	termination ^d	$R_{i,e} + R_{j,e} \xrightarrow{k_{i,e}^{app}(i,j)} P_{i(+j)} \left(+ P_j \right)$	1.3×10^{10}	8.4	10
12		$R_{i,e} + R_{j,m} \xrightarrow{k_{\text{tem}}^{\text{app}}(i,j)} P_{i(+j)} \left(+ P_j \right)$	4.2×10 ⁹	6.6	10
13		$R_{i,m} + R_{j,m} \xrightarrow{k_{i,mm}^{app}(i,j)} P_{i(+j)} \left(+ P_j \right)$	9.0×10 ⁶	5.6	10
14		$R_{0,e}^{I/II/III/IV} + R_{0,e}^{I/II/III/IV} \xrightarrow{k_{t,00}^{app}} P_0$	1.3×10 ¹⁰	8.4	е
15		$R_{0,e}^{I/II/III/IV} + R_{i,e} \xrightarrow{k_{i,0e}^{\text{app}}(i)} P_i(+P_0)$	1.3×10 ¹⁰	8.4	f
16		$R_{0,e}^{I/II/III/IV} + R_{i,m} \xrightarrow{k_{\text{tom}}^{\text{app}}(i)} P_i(+P_0)$	4.2×10^{9}	6.6	g

Table S5 Reactions and Arrhenius parameters used in the simulations of PLP of *n*-butyl acrylate (photoinitiator DMPA) at low (303-323 K) and high temperature (383-413 K; extra dashed box).

^{*a*} Δ [R₀] is calculated via **Equation S2** for $\lambda = 351 \times 10^{-9}$ m, E_{pulse} = 1.5×10^{-3} J, V = 4×10^{-7} m³, L = 1.04×10^{-2} m, and Φ of 0.42⁶; Δ [R₀] at the first laser pulse is equal to 1.04×10^{-5} mol L⁻¹ (initial DMPA concentration= 2.5 x 10⁻³ mol L⁻¹). ^{*b*} higher chain initiation rate because of reaction 8, as a higher number of initiator radicals prone to chain initiation.^{8,11} ^{*c*}Chain length dependent propagation considered.^{12,13} ^{*d*}Chain length dependent (apparent) termination rate coefficients considered with k_t^{app} (1,1) reported here, taking into account correction factor 2¹⁴ and literature based fraction of termination by recombination.^{15,16} fraction of termination by recombination (0.9 (entry 11), 0.3 (entry 12), and 0.1 (entry 13)) in agreement with literature data.¹⁰ ^{*e*}Assumed equal to $k_{t,ee}^{app}$ (1,1) is reported here. ^{*s*}Assumed equal to $k_{t,em}^{app}$ (1,1) is reported here.

S3.1 Photodissociation kinetics

The concentration of initiator radicals generated at each laser pulse ($\Delta[R_0]$) is calculated as:

$$\Delta[R_0] = 2\Phi_{diss} \frac{E_{pulse}\lambda}{hcN_A\Omega L} [1 - \exp(-2.303\varepsilon[\text{DMPA}]L)]$$
(S2)

in which Φ_{diss} is the quantum yield of photodissociation (0.42), E_{pulse} the laser pulse energy (1.5×10⁻³ J), λ the laser wavelength (351×10⁻⁹ m), *h* the Planck constant (6.63×10²³ J s), *c* the speed of light (3×10⁹ m s⁻¹), N_A the Avogadro constant (6.02×10²³ mol⁻¹), Ω the optical cross-sectional area (3.85×10⁻⁵ m²), *L* the optical path length (1.04×10⁻² m), ε the molar absorptivity of the photoinitiator (28 m² mol⁻¹), and [DMPA] is the concentration of photoinitiator, which is updated after each pulse.

S3.2 Chain length dependencies

Chain length dependent propagation kinetics are accounted based on work of Heuts and Russell ¹² and for details readers are referred to the work by Marien *et al.*²

$$k_p(i) = k_p \left[1 + C_1 \exp(-\frac{\ln(2)}{i_{1/2}}i) \right]$$
(S3)

Here *i* refers to the chain length (0 for an initiator-derived radical), in contrast to the equation as originally reported in which i = 1 for an initiator-derived radical. In this work $C_1 = 10$ and $i_{1/2} = 1$ considered based on the work Haven *et al.*.¹³

Chain length dependent (apparent) termination kinetics are evaluated via the composite k_t model, For the low monomer conversion ranges as encountered during PLP, it suffices to consider ^{10,17}:

$$k_t^{app}(i,i) = k_t^{app}(1,1)i^{-\alpha_s} \qquad i \le i_c$$
(S4)

$$k_t^{app}(i,i) = k_t^{app}(1,1)i_c^{-\alpha_s + \alpha_L}i^{-\alpha_L} \quad i > i_c$$
(S5)

in which α_s and α_L express the chain length dependence for short and long radicals, and i_c is the cross-over chain length. In this work $\alpha_s = 0.85$, $\alpha_L = 0.16$, and $i_c = 30$ are used based on the work of Barth *et al.*¹⁰.

S4 Relevance of regression analysis

Regression analyses were carried using both bulk and solution $k_{p,app}$ data at each temperature (main text results). The correlation coefficient between the two parameters k_{bb} and $k_{p,m}$ for the low temperature regression analyses considering only bulk data and by combining bulk and solution data are shown in **Table S6** (left vs. right column). The correlation coefficients between the two parameters are below the threshold value of $0.95^{18,19}$ upon considering both bulk and solution data (right column). With only bulk data (left column) higher values results, highlighting the relevance of the consideration of both bulk and solution data.

Table S6:	Correlation	coefficient	for	$k_{\rm bb}$	and	k _{p,m}
-----------	-------------	-------------	-----	--------------	-----	------------------

Temperature	Correlation coefficient for k_{bb} and $k_{p,m}$								
(K)	Only bulk <i>k_p</i> , app data	Bulk and solution $k_{p,app}$ data							
303	0.98	0.91							
313	0.94	0.94							
323	0.95	0.93							

The details of the estimated k_{bb} and $k_{p,m}$ values at all temperatures are shown in **Table S7**. With the consideration of both bulk and solution data the confidence intervals become more narrow and the estimated value as such is globally in the range of the confidence interval based on bulk data only.

Table S7: k_{bb} and $k_{p,m}$ obtained by regression to bulk data only and bulk and solution data combined

Temp. (K)	303 K		313 K		323 K		
	$k_{ m bb}$	k _{p,m}	$k_{ m bb}$	k _{p,m}	$k_{ m bb}$	k _{p,m}	
Bulk	268.5±99.3	8.7±7.2	436.1±191.7	15.1±11.8	786.9±541.1	32.6±32.1	
Bulk and sol.	285.3±50.5	12.7±5.6	416.8±95.5	18.3±7.8	605.3±140.2	26.6±11.8	

Similar results for k_{β} are highlighted in **Table S8** (high temperature PLP).

Table S8:	k_{β}	obtained	by	regression	to	bulk	data	only	and	bulk	and	solution	data
combined													

Temp. (K)	383 K	393 K	403 K	413 K
	k_{β}	k_{eta}	k_{eta}	k_{eta}
Bulk	75.2±28.9	151.1±13.0	340.0±60.5	397.3±250.0
Bulk and solution	71.5±9.7	125.4±20.7	265.9±91.2	434.1±41.2

Parameters	This work	Plessis	Nikitin	Nikitin	Barth	Hamzehlou
Temperature		<i>et al.</i> ²⁰	$et al.^3$	<i>et.al</i> . ¹⁶	et al. ¹⁰	<i>et al</i> . ¹⁵
(K)						
A (s^{-1})	5.38 ×10 ⁷	3.5×10^{7}	4.84×10^{7}	7.41×10^{7}	1.60×10^{8}	3.20×10^{10}
E _a (kJ mol ⁻¹)	30.6±5.4	29.3	31.7	32.7	34.7	52.3
303	285.3±50.5	311	166	171	167	31
313	416.8±95.5	451	248	259	259	60
323	605.3±140.2	639	362	381	391	111

Table S9: Comparison of backbiting rate coefficient (k_{bb}) with literature data

Table S10: Comparison of tertiary propagation rate coefficient $(k_{p,m})$ with literature data

Parameters	This work	Nikitin <i>et al.</i> ³	Nikitin <i>et al</i> . ¹⁶	Barth <i>et al</i> . ¹⁰
Temperature (K)	-			
A (L mol ⁻¹ s ⁻¹)	1.94×10^{6}	1.52×10^{6}	1.2×10^{6}	9.2×10 ⁵
E _a (kJ mol ⁻¹)	30.1±9.7	28.9	28.6	28.3
303	12.7±5.6	16	14	12
313	18.3±7.8	23	20	17
323	26.6±11.8	32	28	24

Table S11: Comparison of beta-scission rate coefficient (k_{β}) with the literature data

Parameters	This work	Nikitin <i>et al</i> . ¹⁶	Hamzehlou <i>et al.</i> ¹⁵
Temperature (K)			
A (s ⁻¹)	8.03×10 ¹²	1.49×10 ⁹	1.47×10 ⁹
E _a (kJ mol ⁻¹)	81.1±18.2	63.9	55.4
383	71.5±9.7	2.9	40.9
393	125.4±20.7	4.8	63.6
403	265.9±91.2	7.8	96.9
413	434.1±41.2	12.3	144.6

References

- M. Buback, M. Busch and R. A. Lammel, *Macromol. Theory Simul*, 1996, **861**, 845– 861.
- 2 Y. W. Marien, P. H. M. Van Steenberge, K. B. Kockler, C. Barner-Kowollik, M.-F. Reyniers, D. R. D'hooge and G. B. Marin, *Polym. Chem.*, 2016, **7**, 6521–6528.
- A. N. Nikitin, R. A. Hutchinson, M. Buback and P. Hesse, *Macromolecules*, 2007, **40**, 8631–8641.
- 4 P. Drawe and M. Buback, *Macromol. Theory Simulations*, 2016, **25**, 74–84.
- A. B. Vir, Y. W. Marien, P. H. M. Van Steenberge, C. Barner-kowollik, M. Reyniers,
 G. B. Marin and D. R. D'hooge, *React. Chem. Eng.*, 2018, 3, 807–815.
- Y. W. Marien, P. H. M. Van Steenberge, K. B. Kockler, C. Barner-Kowollik, M.-F.
 Reyniers, G. B. Marin and D. R. D'hooge, *Polym. Chem.*, 2017, 8, 3124–3128.
- J. M. Asua, S. Beuermann, M. Buback, P. Castignolles, B. Charleux, R. G. Gilbert, R.
 A. Hutchinson, J. R. Leiza, A. N. Nikitin, J. P. Vairon and A. M. van Herk, *Macromol. Chem. Phys.*, 2004, 205, 2151–2160.
- 8 H. Fischer, R. Baer, R. Hany, I. Verhoolen and M. Walbiner, J. Chem. Soc. Perkin Trans. II, 1990, 787–798.
- 9 S. Maeder and R. G. Gilbert, *Macromolecules*, 1998, **31**, 4410–4418.
- 10 J. Barth, M. Buback, P. Hesse and T. Sergeeva, *Macromolecules*, 2010, **43**, 4023–4031.
- 11 C. Barner-Kowollik, P. Vana and T. P. Davis, *J. Polym. Sci. Part A Polym. Chem.*, 2002, **40**, 675–681.
- 12 J. P. A. Heuts and G. T. Russell, *Eur. Polym. J.*, 2006, **42**, 3–20.
- J. J. Haven, J. Vandenbergh, R. Kurita, J. Gruber and T. Junkers, *Polym. Chem.*, 2015, 6, 5752–5765.
- P. Derboven, P. H. M. Van Steenberge, J. Vandenbergh, M. F. Reyniers, T. Junkers, D.
 R. D'hooge and G. B. Marin, *Macromol. Rapid Commun.*, 2015, 36, 2149–2155.

- 15 S. Hamzehlou, N. Ballard, Y. Reyes, A. Aguirre, J. M. Asua and J. R. Leiza, *Polym. Chem.*, 2016, **7**, 2069–2077.
- 16 A. N. Nikitin, R. A. Hutchinson, W. Wang, G. A. Kalfas, J. R. Richards and C. Bruni, *Macromol. React. Eng.*, 2010, 4, 691–706.
- Y. W. Marien, P. H. M. Van Steenberge, C. Barner-Kowollik, M. F. Reyniers, G. B.
 Marin and D. R. D'hooge, *Macromolecules*, 2017, 50, 1371–1385.
- 18 M. P. Heynderickx, J. W. Thybaut, H. Poelman, D. Poelman and G. B. Marin, *Appl. Catal. B Environ.*, 2010, **95**, 26–38.
- 19 I. Chavez-Sumarriva, P. H. M. Van Steenberge and D. R. D'Hooge, *Ind. Eng. Chem. Res.*, 2016, **55**, 9387–9396.
- 20 C. Plessis, G. Arzamendi, J. M. Alberdi, A. M. van Herk, J. R. Leiza and J. M. Asua, *Macromol. Rapid Commun.*, 2003, **24**, 173–177.