### **Supporting information**

# Synthesis of Chain End Acyl-Functionalized Polymers by Living Anionic Polymerization: Versatile Precursor for H-Shaped Polymers

Kazuki Takahata,<sup>a</sup> Satoshi Uchida,<sup>a</sup> Raita Goseki<sup>a</sup> and Takashi Ishizone<sup>a</sup>\*

<sup>a</sup>Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552 Japan e-mail: tishizon@polymer.titech.ac.jp

## Contents

| Synthesis of chain end acyl-functionalized PIsp.                                       | 3        |
|----------------------------------------------------------------------------------------|----------|
| Synthesis of H-shaped block copolymer of St and 2VP.                                   | 4        |
| Figure S1. <sup>1</sup> H NMR spectrum of run 2.                                       | 5        |
| Figure S2. <sup>13</sup> C NMR spectrum of run 2.                                      | 5        |
| Figure S3. FT-IR spectra of 1 (A) and run 2 (B).                                       | 6        |
| Figure S4. <sup>1</sup> H NMR spectrum of run 8.                                       | 6        |
| Figure S5. <sup>13</sup> C NMR spectrum of run 8.                                      | 7        |
| Figure S6. <sup>1</sup> H NMR spectrum of run 9.                                       | 7        |
| Figure S7. <sup>13</sup> C NMR spectrum of run 9.                                      | 8        |
| Figure S8. MALDI-TOF-MS spectrum of run 9.                                             | 8        |
| Figure S9. <sup>1</sup> H NMR spectrum of run 10.                                      | 9        |
| Figure S10. <sup>13</sup> C NMR spectrum of run 10.                                    | 9        |
| Figure S11. MALDI-TOF-MS spectrum of run 10.                                           | 10       |
| Figure S12. <sup>1</sup> H NMR spectrum of H-shaped PSt.                               | 10       |
| Figure S13. IR spectra of starting acyl end-functionalized telechelic PSt (A), a       | nd       |
| H-shaped PSt (B).                                                                      | 11       |
| Figure S14. GPC curves of starting acyl end-functionalized telechelic PSt (A),         | the      |
| crude product after the grafting reaction (B), and the isolated H-shaped block c       | opolymer |
| with St and 2VP (C).                                                                   | 11       |
| <b>Figure S15.</b> <sup>1</sup> H NMR spectrum of H-shaped copolymer with St and 2VP.  |          |
| Figure S16. IR spectra of starting acyl end-functionalized telechelic PSt (A), a       | nd       |
| H-shaped copolymer with St and 2VP (B).                                                | 12       |
| <b>Figure S17.</b> <sup>1</sup> H NMR spectrum of 1-adamantanyl 4-bromophenyl ketone.  | 13       |
| <b>Figure S18.</b> <sup>13</sup> C NMR spectrum of 1-adamantanyl 4-bromophenyl ketone. | 13       |
| Figure S19. <sup>1</sup> H NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dic   | xolane.  |
|                                                                                        | 14       |
| Figure S20. <sup>13</sup> C NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-die  | oxolane. |
|                                                                                        | 14       |
| Figure S21. <sup>1</sup> H NMR spectrum of 1.                                          | 15       |
| Figure S22. <sup>13</sup> C NMR spectrum of 1.                                         | 15       |

### Synthesis of chain end acyl-functionalized PIsp.

A difunctional living PIsp was obtained by the anionic polymerization of Isp (0.43 g, 6.25 mmol) with K-Naph (0.147 mmol) in THF at -78 °C for 4 h (**Table 1**, run 9). DPE (0.265 mmol, 1.6 equivalent) in THF (2 mL) was added at -78 °C and reacted for 15 min. A THF solution (6 mL) of **1** (0.286 mmol, 1.9 equivalent) was then added at -78 °C to the solution of DPE-capped living PIsp and reacted for 2 h. Finally, the end-functionalization was terminated with degassed AcOH. A white polymer (0.51 g, 96%) was obtained by pouring reaction solution into MeOH. The resulting PIsp was purified by reprecipitation in MeOH and freeze-drying from the benzene solution.

<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; ppm)  $\delta$  = 1.20-2.35 (br, main chain), 1.72 (br, 24H, adamantyl), 1.95-2.03 (br, 36H, adamantyl), 3.74 (s, 2H, terminal *CH*), 4.69-5.74 (br, olefin protons, 7.05-7.41 (br, aromatic).

<sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>; ppm):  $\delta = 16.5-42.4$  (-CH<sub>3</sub>), 28.3 (adamantyl), 36.7 (adamantyl), 40.2 (adamantyl), 36.7-50.0 (main chain), 47.0 (adamantyl), 110.6-111.6 (=CH<sub>2</sub>), 126.0-128.3 (Ar), 136-139 (-CH=CH<sub>2</sub>), 147.2-148.9 (-C(CH<sub>3</sub>)=CH<sub>2</sub>), 209.1 (C=O).

IR (KBr; cm<sup>-1</sup>): 3072, 2923, 2362, 1780, 1668 (C=O), 1644 (=CH<sub>2</sub>), 1602, 1448, 1411, 1374, 885, 699.

#### Synthesis of H-shaped block copolymer of St and 2VP.

A living P2VP anion was firstly prepared by the polymerization of 2VP (0.98 g, 9.31 mmol) with *sec*-BuLi (0.0892 mmol) and DPE (0.161 mmol) in THF at -78 °C. Then, to the solution of the P2VP anion, a THF solution of chain end acyl tetra-functionalized PSt ( $M_n = 3.9$  kg/mol, 0.0181 mmol) was added at -78 °C and reacted for 24 h. During the reaction, the red coloration of the living P2VP was maintained. Finally, the reaction was terminated with MeOH. A polymer of white powder was obtained by pouring reaction solution to hexane. A bimodal GPC curve of the reaction system was obtained, which was corresponding to the objective H-shaped block copolymer and the excess amount of P2VP branch. The H-shaped block copolymer was isolated in 39% yield by repeating fractional precipitations (ethanol/hexane), and purified by freeze-drying from the benzene solution.

<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; ppm)  $\delta = 0.58-0.72$  (m, 24H, CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>3</sub>-), 0.98-2.41 (br, backbone and adamantyl), 3.75 (s, 2H, terminal CH), 6.15-7.25 (br, Ar), 8.06-8.43 (br, 6-position in pyridine ring).

IR (KBr; cm<sup>-1</sup>) 3004, 2930, 1590, 1567, 1473, 1433, 1148, 747, 700.



**Figure S1.** <sup>1</sup>H NMR spectrum of run 2.



**Figure S2.** <sup>13</sup>C NMR spectrum of run 2.



Figure S3. FT-IR spectra of 1 (A) and run 2 (B).



**Figure S4.** <sup>1</sup>H NMR spectrum of run 8.



**Figure S5.** <sup>13</sup>C NMR spectrum of run 8.



**Figure S6.** <sup>1</sup>H NMR spectrum of run 9.



**Figure S7.** <sup>13</sup>C NMR spectrum of run 9.



Figure S8. MALDI-TOF-MS spectrum of run 9.



**Figure S9.** <sup>1</sup>H NMR spectrum of run 10.



Figure S10. <sup>13</sup>C NMR spectrum of run 10.



Figure S11. MALDI-TOF-MS spectrum of run 10.



**Figure S12.** <sup>1</sup>H NMR spectrum of H-shaped PSt.



**Figure S13.** IR spectra of starting acyl end-functionalized telechelic PSt (A), and H-shaped PSt (B).



**Figure S14.** GPC curves of starting acyl end-functionalized telechelic PSt (A), the crude product after the grafting reaction (B), and the isolated H-shaped block copolymer with St and 2VP (C).



Figure S15. <sup>1</sup>H NMR spectrum of H-shaped copolymer with St and 2VP.



**Figure S16.** IR spectra of starting acyl end-functionalized telechelic PSt (A), and H-shaped copolymer with St and 2VP (B).



**Figure S17.** <sup>1</sup>H NMR spectrum of 1-adamantanyl 4-bromophenyl ketone.



Figure S18. <sup>13</sup>C NMR spectrum of 1-adamantanyl 4-bromophenyl ketone.



**Figure S19.** <sup>1</sup>H NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane.



Figure S20. <sup>13</sup>C NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane.



**Figure S21.** <sup>1</sup>H NMR spectrum of **1**.



Figure S22. <sup>13</sup>C NMR spectrum of 1.