Supplementary information

Influence of different sequences of L-proline dipeptide derivatives in the pendants on the helix of poly(phenylacetylene)s and their enantioseparation

properties

Yanli Zhou^a, Chunhong Zhang^{a,*}, Zhengjin Zhou^a, Ruiqi Zhu^a, Lijia Liu^a,

Jianwei Bai^a, Hongxing Dong^a, Toshifumi Satoh^b, Yoshio Okamoto^{a, c}

^a Key Laboratory of Superlight Materials and Surface Technology, Ministry of

Education, College of Materials Science and Chemical Engineering, Harbin

Engineering University, Harbin, 150001, PR China

^b Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

^c Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku,

Nagoya 464-8601, Japan

* Correspondence: zhangchunhong97@163.com

Figure S1. ¹H NMR spectrum of the intermediate product (i) in CDCl₃ at 20 °C.

Figure S2. ¹H NMR spectrum of the intermediate product (ii) in CDCl₃ at 20 °C.

Figure S3. ¹H NMR spectrum of PA-1 in CDCl₃ at 20 °C.

Figure S4. ¹H NMR spectrum of PA-2 in CDCl₃ at 20 °C.

Figure S5. ¹H NMR spectrum of **PPA-1** in DMSO- d_6 at 80 °C.

Figure S6. ¹H NMR spectrum of PPA-2 in DMSO- d_6 at 80 °C.

Figure S7. IR spectra of (A) monomer PA-1 and (B) its polymer PPA-1.

Figure S8. IR spectra of (A) monomer PA-2 and (B) its polymer PPA-2.

Figure S9. Temperature dependence of the CD and UV-Vis spectra of (A) PPA-

1 in DMF (B) **PPA-2** in DMSO (c = 1 mg/mL).

Dynamic Light Scattering Measurements (DLS). Dynamic Light Scattering Measurements (DLS). DLS measurements were performed on a Nicomp 380ZLS (PSS. NICOPMP, USA) equipped with a 15 mW Laser at 25 °C. The obtained diameters of **PPA-1** in CHCl₃ (29 nm) was almost comparable to that in the other solvents (26-32 nm). And for **PPA-2**, the obtained diameters of **PPA-2** in the solvents were in the range of 30-33 nm. These results indicate that the polymers could be well soluble in the solvents and the formation of aggregates of the polymer main chains in the presence of a polar solvent such as DMF can be excluded.