Supporting Information

Benzocyclobutene-functional Double-Decker Silsesquioxane: Self-

Assembled Hybrid Resin for High-Performance Dielectric and LED

Encapsulants

Huan Hu,^a Jiajun Ma,^a Xian Li,^a Qiang Yin,^{*b} Li Fan,^a Xuelian Wei,^a Qiuxia Peng,^a Junxiao Yang^{*a}

a State Key Laboratory of Environmental-friendly Energy Materials, School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China

b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China

*E-mail: yangjunxiao@swust.edu.cn (Pro. Yang) and qyin839@sina.com (Dr. Yin)

CONTENTS

- Page2: Fig. S1: Performance comparison of the BCB-DDSQ resins with current encapulant materials
- Page3: Fig. S2: Possible schematic curing mechanism of 4BCB-DDSQ
- Page4: Fig. S3: ¹H NMR spectrum of DDSQ-2H
- Page5: Fig. S4: ¹H NMR spectrum of DDSQ-4H
- Page6: Fig. S5: ¹³C NMR spectrum of 2BCB-DDSQ
- Page7: Fig. S6: ¹³C NMR spectrum of 4BCB-DDSQ
- Page8: Fig. S7: XRD spectra of DDNa, DDSQ-2H and DDSQ-4H
- Page9: Fig. S8: XRD spectra of DVSBCB, p-2BCB-DDSQ and p-2BCB-DDSQ
- Page10: Fig. S9: N₂ adsorption-desorption isotherms and BJH-analyzed pore-size distribution of p-2BCB-DDSQ and p-4BCB-DDSQ resins
- Page11: Fig. S10: Static contact angle of water on the surface of cured BCB-DDSQ resins
- Page12: Fig. S11: The transmittance of cured BCB-DDSQ resins
- Page13: Table. S1: The data of nanoindentation tests for the p-DVSBCB, p-2BCB-DDSQ and p-4BCB-DDSQ

Fig. S1: Performance comparison of the BCB-DDSQ resins with current encapulants materials

Fig. S2. Possible schematic curing mechanism of 4BCB-DDSQ

(When the temperature was above 180 °C, the four-membered ring of BCB opened and formed an o-quinodimethane active intermediate which can couple with each other or react with other

olefins by Diels-Alder reactions.)

Fig. S4. ¹H NMR spectrum of DDSQ-4H

Fig. S5. ¹³C NMR spectrum of 2BCB-DDSQ

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Fig. S6. ¹³C NMR spectrum of **4BCB-DDSQ**

Fig. S7. XRD spectra of DDNa, DDSQ-2H and DDSQ-4H

Fig. S8. XRD spectra of DVSBCB, p-2BCB-DDSQ and p-2BCB-DDSQ

Fig. S9. N_2 adsorption-desorption isotherms and BJH-analyzed pore-size distribution of **p-2BCB-**

DDSQ and p-4BCB-DDSQ resins

Fig. S10. Static contact angle of water on the surface of cured BCB-DDSQ resins

Fig. S11. The transmittance of cured BCB-DDSQ resins

sample		Elastic mod	lulus (GPa)		Hardness (GPa)					
Sample	Test1	Test2	Test3	Test4	Test1	Test2	Test3	Test4		
p-DVSBCB	4.1	3.8	4.3	4.2	0.28	0.25	0.30	0.28		
p-2BCB-DDSQ	3.0	2.8	2.9	3.0	0.17	0.16	0.16	0.18		
p-4BCB-DDSQ	2.6	2.8	2.9	2.6	0.14	0.17	0.17	0.13		

Tab	le. S1	The c	lata of	nanoinc	lentation	tests f	or th	e p-DVSBCB ,	p-2BCB	-DDSQ a	and r	o-4BCB-	DDSQ
-----	--------	-------	---------	---------	-----------	---------	-------	---------------------	--------	---------	--------------	---------	------