Supporting Information for

Bottom-up design of model network elastomers and hydrogels from precise star polymers

Guido Creusen^{a,b,c}, Ardeshir Roshanasan^{a,b,c}, Javier Garcia Lopez^e, Kalina Peneva^e, Andreas

Walther^{a,b,c,d*}

^aA³BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany

^bFreiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany

^cFreiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany

^dFreiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany.

^eInstitute of Organic Chemistry and Macromolecular Chemistry, Jena Center of Soft Matter, Friedrich Schiller University of Jena, Lessingstr. 8, 07743 Jena, Germany

* Correspondence to: <u>andreas.walther@makro.uni-freiburg.de</u>

Contents

1.	Instrumentation	. 2
2.	Synthesis	.2
3.	, Additional characterization by ¹ H-NMR, SEC, DSC	.3
4.	Full SEC traces of polymerization experiments	. 5

1. Instrumentation

Figure S1. Photograph of the UV polymerization setup, consisting of 4 x 9 365 nm UV lamps and a custom made reflective cooling plate.

2. Synthesis

Figure S2. Reaction scheme for the synthesis of 5-aminopentyl 4'-(2,2':6',2''-terpyridinyl) ether.

Figure S3. ¹H-NMR (CDCl₃, 300 MHz) of ter5-aminopentyl 4'-(2,2':6',2''-terpyridinyl) ether.

3. Additional characterization by ¹H-NMR, SEC, DSC

Figure S4. Analysis of $M_{n,NMR}$ of 4-arm p(mTEGA) after purification by ¹H-NMR (CD₃CN, 300 MHz) via comparison of the initiator isobutyryl 6H to the mTEGA methoxy 3H for three different molecular weight star polymers.

Figure S5. (a) ¹H-NMR (CD₃CN, 300 MHz) analysis showing full norbornene-methylamine functionalization by comparing initiator 6H and norbornene 2H for 4-arm p(mTEGA) with $M_{n,NMR}$ = 39 kg/mol. (b) SEC traces for norbornene-methylamine functionalized 4-arm p(mTEGA) after purification with different molecular weights.

Figure S6. DSC measurements for purified and dried 4-arm p(mTEGA) of different molecular weights.

Figure S7. (a) ¹H-NMR (CD₃CN, 300 MHz) analysis showing full conjugation of a fluorescent PBI-core 4-arm p(mTEGA) with terpyridine-amine. **(b)** SEC trace for the PBI-core p(mTEGA)-terpyridine star polymer after purification.

4. Full SEC traces of polymerization experiments

Figure S8. All SEC traces measured for during the UV-induced Cu-RDRP experiments of 4-arm star p(mTEGA) with [mTEGA]:[TBiB]=1600:1 in DMSO for **(a-c)** the variation of the monomer concentration and **(d-f)** the variation of the [I_{arm}]:[CuBr₂] ratio X.