Supporting Information

for

On the Primary Structure of Polysilenes and Polygermenes

Bahareh Farhadpour, Jiacheng Guo, Douglas W. Hairsine, Joe B. Gilroy, and Kim M. Baines*

Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), University of Western Ontario, London, Ontario Canada, N6A 5B7

Contents

Figure S1. ESI-TOF MS of oligosilene 3-2K
Table S1. Signal assignment for the mass spectrum of oligosilene 3-2K
Figure S2. ESI-TOF MS of oligosilene PSBu-4K
Table S2. Signal assignment for the mass spectrum of PSBu-4K
Figure S3. Expansion of the ESI-TOF MS of PSBu-4K
Figure S4. ESI-TOF MS of oligosilene PSMe-4K
Figure S5. Expansion of the MS of PSMe-4K
Table S3. Signal assignment for the mass spectrum of PSMe-4K
Figure S6. ESI-TOF MS of oligogermene 4-7K
Table S4. Signal assignment for the mass spectrum of 4-7K
Figure S7. Expansion of the ESI-TOF MS of oligogermene 4-7K
Table S5. High resolution mass data for oligogermene 4-7K S11
Figure S8. Expansion of the ¹ H- ¹³ C HSQC NMR spectrum of 3-17K (aromatic region) S12
Figure S9. Expansion of the ¹ H- ¹³ C HSQC NMR spectrum of 4-7K (aliphatic region) S13
Figure S10. Expansion of the ¹ H- ¹³ C HSQC NMR spectrum of 4-7K (aromatic region) S14

Figure S1. ESI-TOF MS of oligosilene 3-2K

Ion assignment ^a	m/z calculated ^b	<i>m/z</i> observed ^b
$[t-Bu-S_4-H+Cs]^+$	1593.0	1593.0
$[t-Bu-S_5-H+Cs]^+$	1943.2	1943.2
$[t-Bu-S_6-H+Cs]^+$	2294.4	2294.4
$[t-Bu-S_7-H+Cs]^+$	2644.7	2644.7
$[t-Bu-S_8-H+Cs]^+$	2994.9	2995.9
[t-Bu-S9-H+Cs] ⁺	3346.2	3345.2
$[t-Bu-S_{10}-H+Cs]^+$	3696.4	3696.4
$[t-Bu-S_{11}-H+Cs]^+$	4046.7	4047.6

 Table S1. Signal assignment for the mass spectrum of oligosilene 3-2K

^aS = SiMes₂CHCH₂t-Bu; ^bFor the most intense signal within the isotopic cluster

Figure S2. ESI-TOF MS of oligosilene PSBu-4K (a) from *m/z* 1450 to 2300, (b) from *m/z* 2300

to 3500

Ion assignments ^a	m/z calculated ^b	m/z observed ^b
[Bu-S ₄ -H+Na] ⁺	1483.1	1482.0
$[(NaI)_{10}Na]^+$	1521.9	1521.9
$[(NaI)_{11}Na]^+$	1671.8	1671.8
$[(NaI)_{12}Na]^+$	1821.7	1821.7
$[Bu-S_5-H+Na]^+$	1833.3	1833.3
[(NaI)13Na] ⁺	1971.6	1971.6
[(NaI)14Na] ⁺	2121.5	2121.5
$[Bu-S_6-H+Na]^+$	2184.5	2184.5
[(NaI)15Na] ⁺	2271.4	2271.4
$[(NaI)_{16}Na]^+$	2421.3	2421.2
[Bu-S7-H+Na] ⁺	2533.8	2534.8
[(NaI)17Na] ⁺	2571.2	2571.2
$[(NaI)_{18}Na]^+$	2721.1	2721.0
[(NaI)19Na] ⁺	2871.0	2871.0
$[Bu-S_8-H+Na]^+$	2885.0	2886.1
$[(NaI)_{20}Na]^+$	3020.9	3020.8
$[(NaI)_{21}Na]^+$	3170.8	3170.8
[Bu-S ₉ -H+Na] ⁺	3235.3	3235.7

 Table S2. Signal assignment for the mass spectrum of PSBu-4K

^aS = SiMes₂CHCH₂*t*-Bu; ^bFor the most intense signal within the isotopic cluster

Figure S3. Expansion of the ESI-TOF MS of PSBu-4K showing the (a) experimental isotopic pattern of m/z 2184.5 (b) calculated isotopic pattern

Figure S4. ESI-TOF MS of oligosilene PSMe-4K (a) from m/z 1450 to 2500, (b) from m/z

2400 to 3400

Figure S5. Expansion of the MS of PSMe-4K showing (a) the experimental isotopic pattern of m/z 1790.3, (b) calculated isotopic pattern

Ion assignment ^a	m/z calculated ^b	<i>m/z</i> observed ^b
[Me-S4-H+Na] ⁺	1440.0	1440.0
[Me-S ₅ -H+Na] ⁺	1790.2	1790.3
[Me-S ₆ -H+Na] ⁺	2140.4	2141.5
[Me-S7-H+Na] ⁺	2490.6	2492.8
[Me-S ₈ -H+Na] ⁺	2840.8	2842.9
[MeO-S4-H+Na] ⁺	1456.0	1458.5
[MeO-S ₅ -H+Na] ⁺	1806.2	1808.3
[MeO-S ₆ -H+Na] ⁺	2156.4	2158.7
[MeO-S7-H+Na] ⁺	2506.6	2508.4
[MeO-S ₈ -H+Na] ⁺	2856.8	2858.5
[t-Bu-S ₄ -H+Na] ⁺	1483.1	1483.1
$[t-Bu-S_5-H+Na]^+$	1833.3	1833.4
$[t-Bu-S_6-H+Na]^+$	2184.5	2183.6
$[t-Bu-S_7-H+Na]^+$	2533.8	2534.8
$[t-Bu-S_8-H+Na]^+$	2885.0	2883.6
$[t-Bu-S_9-H+Na]^+$	3235.3	3233.7

Table S3. Signal assignment for the mass spectrum of PSMe-4K

 $^{a}S = SiMes_{2}CHCH_{2}t$ -Bu; ^{b}For the most intense signal within the isotopic cluster

Table S4. Signal assignment for the mass spectrum of 4-7K

Ion assignment ^a	m/z calculated ^b	<i>m/z</i> observed ^b
[t-Bu-G ₃ -H+Na] ⁺	1265.6	1265.6
[t-Bu-G4-H+Na] ⁺	1661.8	1661.8
$[t-Bu-G_5-H+Na]^+$	2057.0	2057.0
$[t-Bu-G_6-H+Na]^+$	2452.2	2450.2
$[t-Bu-G_7-H+Na]^+$	2847.4	2847.4
$[t-Bu-G_8-H+Na]^+$	3242.5	3242.6
$[t-Bu-G_9-H+Na]^+$	3637.7	3639.8

^aG = GeMes₂CHCH₂*t*-Bu; ^bFor the most intense signal within the isotopic cluster

Figure S7. Expansion of the ESI-TOF MS of oligogermene 4-7K in CH₂Cl₂/MeOH with an expansion from m/z 800 to 2000. The sensitivity of the instrument was optimized for lower m/z values. Also visible are a series of signals with a spacing of m/z 74 which are assigned to silicone grease.

Table S5. High resolution mass data for oligogermene 4-7K

[t-Bu[GeMes ₂ CHCH ₂ t-Bu] _n H+Na] ⁺	Exact mass (calc.)	Exact mass (exp.)	Error (ppm)
n = 2	871.4434	871.4444	1
n = 3	1265.6345	1265.6343	0.02
n = 4	1661.8194	1661.8242	0.48

Figure S8. Expansion of the ¹H-¹³C HSQC NMR spectrum of 3-17K (aromatic region) (600

MHz for ¹H, C₆D₆, 25 °C; δ ¹H 6.5-6.8, δ ¹³C 123-136 ppm; correlations in red correspond to CH₂ groups and those in blue correspond to CH/CH₃ groups)

Figure S9. Expansion of the ¹H-¹³C HSQC NMR spectrum of 4-7K (aliphatic region) (600 MHz for ¹H, C₆D₆, 25 °C; δ ¹H 0.4-3.2, δ ¹³C 0-50 ppm; correlations in red correspond to CH₂ groups and those in blue correspond to CH/CH₃ groups)

Figure S10. Expansion of the ¹H-¹³C HSQC NMR spectrum of 4-7K (aromatic region) (600

MHz for ¹H, C₆D₆, 25 °C; δ ¹H 6.4-6.7, δ ¹³C 124-134 ppm; correlations in red correspond to CH₂ groups and those in blue correspond to CH/CH₃ groups)

