Supporting Information

Indole based Charge Transfer Complexes as Versatile Dual Thermal and Photochemical Polymerization Initiators for 3D Printing and Composites

Dengxia Wang^{1,2,3}, Patxi Garra^{1,2}, Jean Pierre Fouassier^{1,2}, Bernadette Graff^{1,2}, Yusuf Yagci⁴, Jacques Lalevée^{1,2*}

¹Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France ²Université de Strasbourg, 67000 Strasbourg, France ³Shandong Institute of Nonmetallic Materials, Jinan, 250031, China

⁴ Department of Chemistry, Faculty of Science and Literature, Istanbul Technical University, Maslak, Ayazaga Campus, Istanbul, 34469, Turkey

*Corresponding author: jacques.lalevee@uha.fr

Figure S1. Numerical optical microscope observation of patterns written from the polymerization of Resin 1, under air. for **A**, **C**: [6-aminoindole-Iod]CTC as initiator; **B**, **D**: [1-menthylindole-Iod]CTC as initiator; **A**, **C**: top surface morphology; **B**, **D**: 3D overall appearance. A writer using a laser diode at 405 nm (size of the spot around 50 μ m) with the intensity of 100 mW was used for the spatially controlled irradiation (see original HD image in Figure S1).