Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for

Construction of Dimetal-Containing Dithiolene and Schiff Base Conjugated Polymer Coating: Exploiting Metal Coordination as a Design Strategy for Improving Infrared Stealth Properties

Jingwen Cai,^{a,b†} Jianhua Han,^{a,c†} Guojia Ma,^d Xing Liu,^d Jinyan Wang *^{a,b} and Xigao Jian^{a,b}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China. ^bPolymer Science & Materials, Chemical Engineering College, Dalian University of Technology, Dalian, 116024, China.

^cCAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

^dNational Key Laboratory of Science and Technology on Power Beam Processes, Chinese Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China.

Correspondence to:Jinyan Wang (E-mail:wangjinyan@dlut.edu.cn)

[†] Jingwen Cai and Jianhua Han contributed equally to the manuscript.

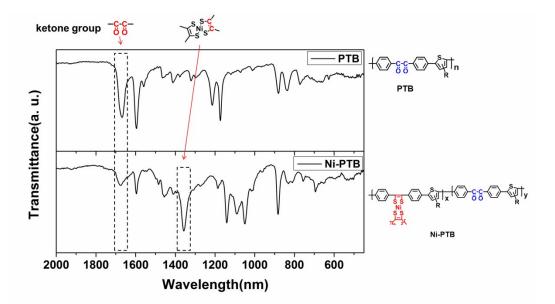
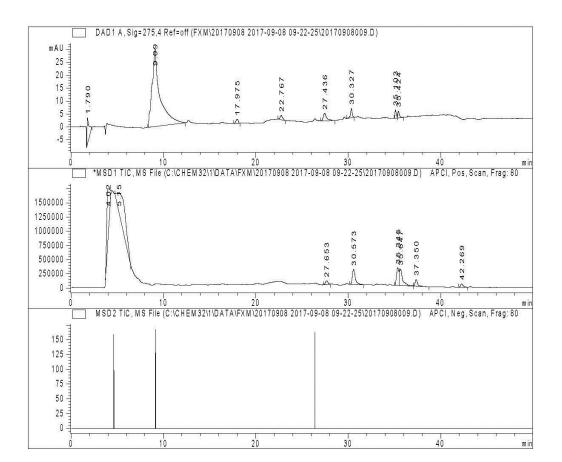
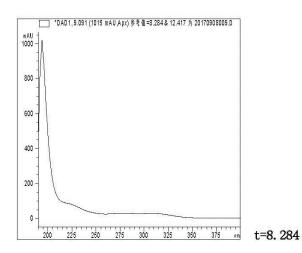
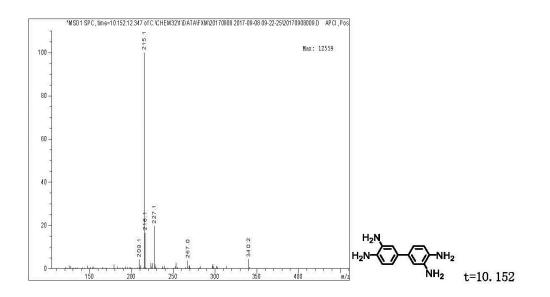
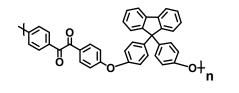
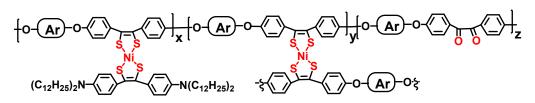





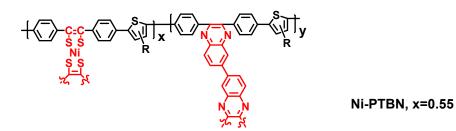
Figure S1. FT-IR spectra of PTB and Ni-PTB.




信号 1: DAD1 A, Sig=275,4 Ref=off

	峰 保留	时间 类	型峰	宽	峰面积	识	峰高	峰面积
#	[min]	[m	in]	[mAU*s]		[mAU]		%
]	[-]	[-		[
1	1.790 H	BB 0.	2086	148.514	47	10.0372	26 6.	8290
2	9.090 H	BB 0.	7226 1	779.840	33	30.3319	54 81.	8411
3	17.975 H	BB 0.	2619	28.168	06	1.6120)7 1.	2952
4	22.767 H	BB 0.	2458	33.113	19	1.7269	55 1.	5226
5	27.436 H	BB 0.	3761	76.232	282	2.9247	71 3.	5054
6	30.327 H	BB 0.	1801	45.415	58	3.6273	33 2.	0883
7	35.103 H	BV 0.	1457	32.815	525	3.3661	.4 1.	5089
8	35.424 \	VB 0.	1627	30.651	46	2.6956	52 1.	4094
总量			2	174.751	16	56.3212	22	

Figure S2. HPLC-MS of polymers by Soxhlet extraction.


PS: products at other elution times are hard to confirm by their MS spectra, such as t=17.975 min, t=22.767 min and t=27.436 min.

NiN-P8, x+y=ca. 0.34

PFO

NiCu-PTBN; salts: CuBr₂ NiLa-PTBN; salts:La(OAc)₃·H₂O NiSm-PTBN; salts:Sm(OAc)₃·6H₂O NiLu-PTBN; salts:Lu(OAc)₃·H₂O

Figure S3. Structures of polymers in the comparison.

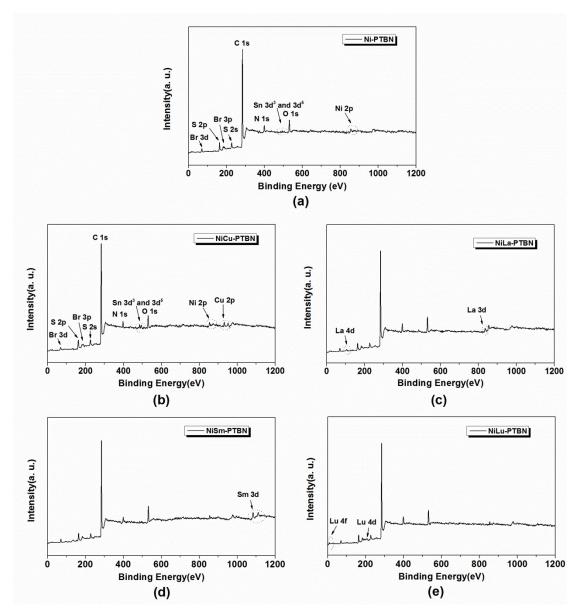


Figure S4. XPS spectra of polymers.

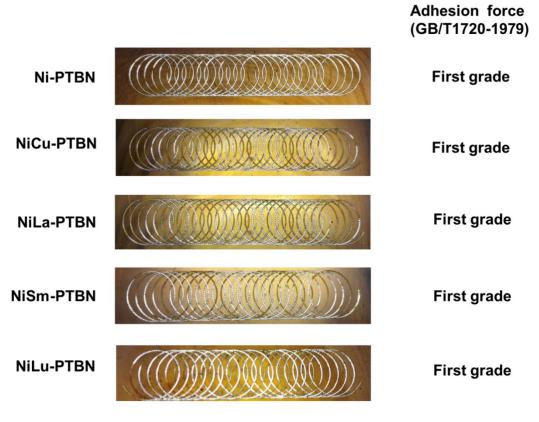


Figure S5. Adhesion force of polymer coatings.

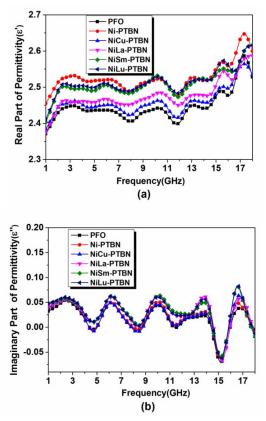


Figure S6. Real part ϵ '(a) and imaginary part ϵ ''(b) of complex permittivity for coating.

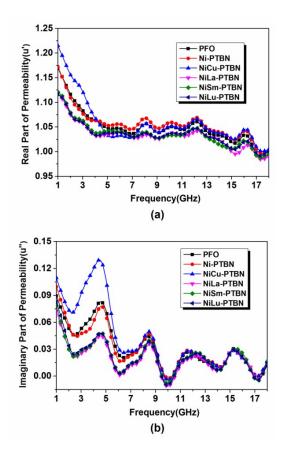


Figure S7. Real part μ '(a) and the imaginary part μ ''(b) of complex permeability for coating.