Supporting Information for:

## Rationally designed anionic diblock copolymer worm gels are useful model systems for calcite occlusion studies

Lee A. Fielding, \* Coit T. Hendley IV, Emily Asenath-Smith, Lara A. Estroff and Steven P. Armes



**Figure S1.** Small-angle X-ray scattering patterns recorded for  $[nPMAA_{85} + (1-n)PGMA_{48}]$ -PHPMA<sub>140</sub> 5.0 % w/w worm gels where (A) n = 0 and (B) n = 0.15. The temperature was cycled between 22 and 2 °C in the steps indicated on the plots and the sample was allowed to equilibrate for 5 minutes at each step.

| Sample Composition                | Model <sup>a</sup> | $\boldsymbol{\Phi}_{\boldsymbol{I}^{b}}$ | <b>R</b> <sup>c</sup> / Å | $\sigma_{\rm R}$ / Å | $L_{c}^{d}/A$ | $L_{\mathbf{k}}^{d}$ / Å | <i>T</i> <sub>m</sub> <sup><i>e</i></sup> / Å | $\sigma_{\rm Tm}$ / Å | $\mathbf{\Phi}_{2^{b}}$ |
|-----------------------------------|--------------------|------------------------------------------|---------------------------|----------------------|---------------|--------------------------|-----------------------------------------------|-----------------------|-------------------------|
| $[0.5M_{37}+0.5G_{68}]-H_{250}$   | Vesicle            | 0.0103                                   | 804                       | 259                  |               |                          | 182                                           | 25                    | 0.0027                  |
| $[0.1M_{37}+0.9G_{68}]-H_{200}$   | Vesicle            | 0.0122                                   | 1012                      | 312                  |               |                          | 126                                           | 22                    | 0.0007                  |
| $[0.2M_{37}+0.8G_{68}]-H_{150}$   | Worm               | 0.0022                                   | 97                        | 15                   | 784           | 25                       |                                               |                       | 0.0024                  |
| $[0.6M_{37}+0.4G_{68}]-H_{200}$   | Sphere             | 0.0054                                   | 292                       | 47                   |               |                          |                                               |                       | 0.0030                  |
| $[0.6M_{37}+0.4G_{68}]-H_{100}$   | Sphere             | 0.0044                                   | 207                       | 34                   |               |                          |                                               |                       | 0.0040                  |
| $M_{37}$ - $H_{300}$              | Sphere             | 0.0047                                   | 252                       | 36                   |               |                          |                                               |                       | 0.0054                  |
| $[0.2M_{85}+0.8G_{62}]-H_{300}$   | Vesicle            | 0.0117                                   | 1415                      | 531                  |               |                          | 358                                           | 67                    | 0.0011                  |
| $[0.05M_{85}+0.95G_{62}]-H_{200}$ | Vesicle            | 0.0200                                   | 1135                      | 360                  |               |                          | 140                                           | 20                    | 0.0014                  |
| $[0.2M_{85}+0.8G_{62}]-H_{150}$   | Worm               | 0.0043                                   | 100                       | 9                    | 500           | 108                      |                                               |                       | 0.0029                  |
| $[0.05M_{85}+0.95G_{62}]-H_{150}$ | Worm               | 0.0054                                   | 94                        | 13                   | 1298          | 170                      |                                               |                       | 0.0029                  |
| $[0.3M_{85}+0.7G_{62}]-H_{200}$   | Sphere             | 0.0064                                   | 406                       | 48                   |               |                          |                                               |                       | 0.0014                  |
| $[0.05M_{85}+0.95G_{62}]-H_{75}$  | Sphere             | 0.0047                                   | 87                        | 8                    |               |                          |                                               |                       | 0.0048                  |

Table S1. Summary of models<sup>a</sup> and various structural parameters obtained from fitting SAXS patterns recorded for 1.0 % w/w aqueous dispersions of copolymer nano-objects from Figure 4.

<sup>a</sup> Data collected for 1.0 % w/w aqueous dispersions of nano-objects were fitted to a two-population model of either spherical micelles (Sphere), worm-like micelles (Worm) or copolymer vesicles (Vesicle) plus Gaussian polymer chains. The total scattering intensity, I(q), is represented by:

$$=\frac{d\Sigma}{d\Omega}(q)_{S}+\frac{d\Sigma}{d\Omega}(q)_{C} \qquad \qquad \frac{d\Sigma}{d\Omega}(q)_{C}$$

 $\frac{d\Sigma}{d\Omega}(q)_c$  is the scattering cross-section per unit sample volume of the first population and  $\frac{d\Sigma}{d\Omega}(q)_c$  is the scattering cross-section I(q) = $d\Omega'$ where  $d\Omega^{\circ}$ dΩ` per unit sample volume of Gaussian polymer chains. Additional descriptions of these models are given below.

<sup>b</sup>  $\Phi_1$  and  $\Phi_2$  represent the volume fraction of the 1<sup>st</sup> population and Gaussian polymer chains, respectively.

<sup>c</sup> R represents either the radius of the spherical core, worm-cross section or outer vesicle radius.

 $^{d}L_{c}$  and  $L_{k}$  are the worm contour length and Kuhn length, respectively.

 $e T_{\rm m}$  represents the vesicle wall thickness.

## SAXS models

Programming tools within Irena SAS Igor Pro macros<sup>1</sup> were used to implement model fitting.

The SAXS models used in this work have been described in detail before and can be found at the following sources:

| Model                                | Location                         | DOI                          |
|--------------------------------------|----------------------------------|------------------------------|
| Gaussian polymer chains <sup>2</sup> | Supporting information, page S10 | 10.1021/acs.macromol.6b00987 |
| Spherical micelles <sup>2</sup>      | Supporting information, page S11 | 10.1021/acs.macromol.6b00987 |
| Worm-like micelles <sup>3</sup>      | Supporting information, page S3  | <u>10.1021/ja501756h</u>     |
| Copolymer vesicles <sup>4</sup>      | Supporting information, page S14 | 10.1039/C6SC01243D           |

All X-ray scattering length densities ( $\xi$ ) were calculated using Irena SAS Igor Pro macros<sup>1</sup> using homopolymer densities measured by helium pycnometry, where appropriate. Specifically:  $\xi_{PHPMA} =$ 11.11 x 10<sup>10</sup> cm<sup>-2</sup>;  $\xi_{PGMA} =$  11.94 ×10<sup>10</sup> cm<sup>-2</sup>;  $\xi_{PMAA} =$  10.88 ×10<sup>10</sup> cm<sup>-2</sup> and the solvent,  $\xi_{H2O} =$  9.42 × 10<sup>10</sup> cm<sup>-2</sup>. Calculated volumes of the core and the corona block used in model fitting were obtained from V =  $M_w/(N_{A,P})$ , using homopolymer densities determined by helium pycnometry.

## References

1. Ilavsky, J.; Jemian, P. R. Irena: tool suite for modeling and analysis of small-angle scattering. *J. Appl. Crystallogr.* **2009**, *42*, 347-353.

2. Akpinar, B.; Fielding, L. A.; Cunningham, V. J.; Ning, Y.; Mykhaylyk, O. O.; Fowler, P. W.; Armes, S. P. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. *Macromolecules* **2016**, *49*, (14), 5160-5171.

3. Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. Thermo-responsive diblock copolymer worm gels in non-polar solvents. *J. Am. Chem. Soc.* **2014**, *136*, (15), 5790-5798.

4. Derry, M. J.; Fielding, L. A.; Warren, N. J.; Mable, C. J.; Smith, A. J.; Mykhaylyk, O. O.; Armes, S. P. In situ small-angle X-ray scattering studies of sterically-stabilized diblock copolymer nanoparticles formed during polymerization-induced self-assembly in non-polar media. *Chemical Science* **2016**, *7*, (8), 5078-5090.