## **Supporting Information**

## Consequences of Isolated Critical Monomer Sequence Errors on the Hydrolysis Behaviors of Sequenced Degradable Polyesters

Jamie A. Nowalk<sup>†</sup>, Jordan H. Swisher<sup>†</sup>, Tara Y. Meyer<sup>\*,†,‡</sup>

*†Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States* 

*‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States* 

# Contents

| 1. | Optical Profilometry Measurements    | 2   |
|----|--------------------------------------|-----|
|    | Figure S1                            | 2   |
| 2. | Scanning Electron Microscopy Imaging | 3   |
| 3  | Experimental                         | 5   |
|    | Scheme S1                            | 5   |
|    | Scheme S2                            | 5   |
|    | Scheme S3                            | 6   |
| 3. | Experimental Spectra                 | 19  |
| SE | C Plots                              | 36  |
| Re | ferences                             | .40 |

# 1. Optical Profilometry Measurements Figure S1



Figure S 1. Optical profilometry film thickness measurements.

# 2. Scanning Electron Microscopy Imaging



Figure S2. Scanning electron microscopy images (100x) of lyophilized films during hydrolysis.



Figure S3. Scanning electron microscopy images (100x) of lyophilized films during hydrolysis.

### 3 Experimental

3.1 General Information

All reactions were performed in an inert atmosphere under  $N_2$  unless otherwise stated. Methylene chloride and ethyl acetate were purchased from Fisher Scientific, stored in a solvent system, and passed through an activated alumina column prior to use. DCC was purchased from Oakwood Chemicals and used without further purification. Nucleophilic catalyst DPTS was prepared by neutralization of p-toluene sulfonic acid with pyridine and purified by recrystallization in dichloroethane. Silica gel for column chromatography was purchased from Sorbent Technologies.

The detailed synthesis of Cyc-SyLMLGLGL was previously reported.<sup>1</sup>

Scheme S1



Scheme S1. Synthetic steps toward LGGGL-Si.

Scheme S2



Scheme S2. Steglich esterification to Bn-SyLMLGGGL-Si.



**Scheme S3.** Benzyl and silyl deprotections to yield SyLMLGGGL and subsequent macrolactonization reaction to prepare Cyc-SyLMLGGGL.

Spectra for all compounds/polymers begin on page S19.

|                                                                                                                                                |                                                                              |                                                    | Bn-G                                                                                                                                    | GL-Si                                                                                                      |                                                                                                                                                                    |                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                |                                                                              |                                                    | $\langle \rangle$                                                                                                                       | <sup>13</sup> C-NMR (                                                                                      | (400 MHz, CDCl <sub>3</sub> )                                                                                                                                      | HRMS (ESI)                                                                                                                                                   |
|                                                                                                                                                | G1                                                                           | <b>G2</b>                                          | L1<br>z, CDCl3)                                                                                                                         | <u>δ (ppm)</u><br>19.90<br>21.92<br>27.47<br>60.89<br>61.71<br>67.94<br>69.34                              | + Assignment<br>TBDPS (C)<br>L1 (CH <sub>3</sub> )<br>TBDPS (CH <sub>3</sub> )<br>G (CH <sub>2</sub> )<br>G (CH <sub>2</sub> )<br>Bn (CH <sub>2</sub> )<br>L1 (CH) | <u>Calc. Mass</u><br>534.21 amu<br><u>Calc. [M+Na<sup>+</sup>]<sup>+</sup></u><br>557.20 amu<br><u>Found [M+Na<sup>+</sup>]<sup>+</sup></u><br>557.19766 amu |
| δ (ppm)           1.11           1.42           4.40           4.53           4.73           4.71           5.20           7.37           7.65 | Mult. (J)<br>s<br>d (6.5)<br>q (6.5)<br>d (16)<br>d (16)<br>s<br>s<br>m<br>m | Int.<br>9<br>3<br>1<br>1<br>1<br>2<br>2<br>11<br>4 | Assignment<br>TBDPS - tBu<br>L1 (CH <sub>3</sub> )<br>L1 (CH)<br>G<br>G<br>G<br>Bn (CH <sub>2</sub> )<br>TBDPS - o, p + Bn<br>TBDPS - m | 127.79<br>127.82<br>128.29<br>128.34<br>129.99<br>133.58<br>133.61<br>135.28<br>136.07<br>167.59<br>173.62 | Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>G1, G2 (CO)<br>L (CO)                                                                               | Composition<br>C <sub>30</sub> H <sub>34</sub> O <sub>7</sub> Si                                                                                             |

#### **Bn-GGL-Si**

**Bn-G** (5.12 g, 30.8 mmol) and **GL-Si** (11.35 g, 31.9 mmol) were dissolved in 290 mL DCM. DPTS (1.71 g, 5.8 mmol) was added and allowed to dissolve before the addition of DCC (6.58 g, 31.9 mmol). The reaction vessel was capped and the reaction was allowed to stir at RT overnight. The solution was filtered, concentrated *in vacuo*, and purified by column chromatography using 5% ethyl acetate in hexanes. Product eluted in fractions 5-11 (250 mL fractions). 10.3 g (66%).

|                                                         |                                                                                 |                                        | G                                                                                                             | GL-Si                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                 |                                        | $\diamond$                                                                                                    | <sup>13</sup> C-NMR (                                                                                                                                                                                                                      | (400 MHz, CDCl <sub>3</sub> )                                                                                                                                                                                                                                                  | HRMS (ESI)                                                                                                                                                                                                                                            |
| δ (ppm)<br>1.09<br>1.42<br>4.40<br>4.53<br>4.73<br>4.71 | 0<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1<br>G1 | 0<br>3<br>500 MHz,<br>1<br>1<br>1<br>2 | CDCl <sub>3</sub> )<br>Assignment<br>TBDPS - tBu<br>L1 (CH <sub>3</sub> )<br>L1 (CH)<br>G<br>G<br>G<br>G<br>G | $\begin{array}{r} {}^{13}\text{C-NMR} (\\ \hline & \delta (\text{ppm}) \\ \hline 19.38 \\ 21.40 \\ 21.93 \\ 60.32 \\ 61.34 \\ 68.81 \\ 127.79 \\ 127.82 \\ 129.99 \\ 133.58 \\ 133.61 \\ 135.28 \\ 136.07 \\ 167.00 \\ 171.65 \end{array}$ | 400 MHz, CDCl <sub>3</sub> )<br>+ Assignment<br>TBDPS (C)<br>TBDPS (CH <sub>3</sub> )<br>L1 (CH <sub>3</sub> )<br>G (CH <sub>2</sub> )<br>G (CH <sub>2</sub> )<br>L (CH)<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>Arene<br>G (CO)<br>G (CO)<br>G (CO) | HRMS (ESI)<br><u>Calc. Mass</u><br>444.16 amu<br><u>Calc. [M+Na<sup>+</sup>]<sup>+</sup></u><br>467.15 amu<br><u>Found [M+Na<sup>+</sup>]<sup>+</sup></u><br>467.14973 amu<br><u>Composition</u><br>C <sub>23</sub> H <sub>28</sub> O <sub>7</sub> Si |
| 7.37<br>7.65                                            | m<br>m                                                                          | 6<br>4                                 | TBDPS – o, p<br>TBDPS - m                                                                                     | 173.23                                                                                                                                                                                                                                     | L (CO)                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |

#### GGL-Si

**Bn-GGL-Si** (10.3 g, 19.3 mmol) was dissolved in 190 mL ethyl acetate in a Schlenk flask to prepare a 0.1 M solution. Pd/C (1.03 g, 10% by mass) was added, and two balloons of  $H_2$  (g) were passed through the flask. A third balloon was attached to serve as a source of excess  $H_2$  (g). The reaction was stirred at RT overnight. The solution was then filtered through a thick pad of celite and concentrated to provide the pure product, 7.3 g yield (85%).

|                                                                              |                                                                              |                                            | Bn-Ge                                                                                             | GGL-Si                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                                                                                                                                 |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                                                                              |                                            |                                                                                                   | <sup>13</sup> C-NMR (400 MHz,                                                                                                                                                                                                                                                                              | CDCl <sub>3</sub> )                                             | HRMS (ESI)                                                                                                                                                                      |
| δ (ppm)<br>1.10                                                              | G1<br>IH-NMR<br>Mult. (J)                                                    | <b>G2</b> (500 MH:<br><u>Int.</u><br>9     | z, CDCl <sub>3</sub> )<br>Assignment<br>TBDPS - tBu                                               | $^{13}$ C-NMR (400 MHz, 6 $\delta$ (ppm) + Assignm           19.38         TBDPS           21.40         TBDPS           60.32         G (CH2)           61.34         G (CH2)           67.49         Bn (CH           68.81         L (CH)           127.79         Arene           128.59         Arene | CDCl <sub>3</sub> )<br>nent<br>(C)<br>(CH <sub>3</sub> )<br>(2) | HRMS (ESI)<br><u>Calc. Mass</u><br>938.30 amu<br><u>Calc. [M+Na<sup>+</sup>]<sup>+</sup></u><br>961.30 amu<br><u>Found</u><br>961.2988 amu<br><u>Composition</u><br>C46H54O19Si |
| 1.43<br>4.38<br>4.53<br>4.73<br>4.77<br>4.79<br>4.81<br>5.20<br>7.37<br>7.65 | d (6.5)<br>q (6.5)<br>d (16)<br>d (16)<br>dd (16)<br>s<br>dd<br>dd<br>m<br>m | 3<br>1<br>1<br>4<br>2<br>2<br>2<br>11<br>4 | L1 (CH <sub>3</sub> )<br>L1 (CH)<br>G<br>G<br>G<br>G<br>G<br>Bn<br>TBDPS - o, p + Bn<br>TBDPS - m | 128.79       Arene         128.83       Arene         130.00       Arene         133.58       Arene         133.61       Arene         135.28       Arene         136.07       Arene         166.70       G (CO)         166.96       G (CO)         166.97       G (CO)         173.11       L (CO)       |                                                                 |                                                                                                                                                                                 |

#### **Bn-GGGL-Si**

**Bn-G** (1.91 g, 11.5 mmol and **GGL-Si** (4.64 g, 10.4 mmol) were dissolved in 104 mL DCM. DPTS (0.612 g, 2.1 mmol) was added and allowed to dissolved before the addition of DCC (2.37 g, 11.5 mmol). The reaction vessel was capped and the reaction was allowed to stir at RT overnight. The solution was filtered, concentrated *in vacuo*, and purified by column chromatography using 5-10% ethyl acetate in hexanes. Product eluted in fractions 4-9 (250 mL fractions). 3.31 g, 59%.

|                                                                                                |                                                                                                                          |                                                         | GG                                                                                                                                                   | GL-Si                                                   |                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                |                                                                                                                          |                                                         | $\land$                                                                                                                                              | <sup>13</sup> C-NMR (400 MHz, CDCl <sub>3</sub> )       | HRMS (ESI)                                                                                                                                                                                                                       |
| HO.<br>δ (ppm)<br>1.09<br>1.41<br>4.38<br>4.53<br>4.73<br>4.77<br>4.79<br>4.81<br>7.37<br>7.65 | G1 G2<br><sup>1</sup> H-NMR (<br>Mult. (J)<br>s<br>d (6.5)<br>q (6.5)<br>d (16)<br>d (16)<br>d (16)<br>s<br>dd<br>m<br>m | G3<br>(400 MHz,<br>1<br>1<br>1<br>4<br>2<br>2<br>6<br>4 | CDCl <sub>3</sub> )<br>Assignment<br>TBDPS - tBu<br>L1 (CH <sub>3</sub> )<br>L1 (CH)<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>TBDPS - o, p<br>TBDPS - m | $\begin{array}{r c c c c c c c c c c c c c c c c c c c$ | HRMS (ESI)           Calc. Mass<br>502.17 amu           Calc. [M-H] <sup>-</sup><br>501.16 amu           Found<br>[M-H] <sup>-</sup><br>501.15657 amu           Composition<br>C <sub>25</sub> H <sub>30</sub> O <sub>9</sub> Si |

#### GGGL-Si

**Bn-GGGL-Si** (3.31 g, 5.59 mmol) was dissolved in 55 mL ethyl acetate in a Schlenk flask to prepare a 0.1 M solution. Pd/C (0.330 g, 10% by mass) was added, and two balloons of  $H_2$  (g) were passed through the flask. A third balloon was attached to serve as a source of excess  $H_2$  (g). The reaction was stirred at RT overnight. The solution was then filtered through a thick pad of celite and concentrated to provide the pure product, 2.60 g yield (93%).

|         |           |                | Bn-LG                 | GGL-Si                                                                                 |                       |                                                                                                                                                   |
|---------|-----------|----------------|-----------------------|----------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|         |           |                |                       | <sup>13</sup> C-NMR (                                                                  | 400 MHz, CDCl3)       | HRMS (ESI)                                                                                                                                        |
| C       | L1 G1     | <b>G2</b>      | G3 L2 CDCl3)          | δ (ppm)           0         -5i           63         L2           CDCl3)         67.43 |                       | <u>Calc. Mass</u><br>664.23 amu<br><u>Calc. [M+NH4]<sup>+</sup></u><br>682.26 amu<br><u>Found</u><br>[ <u>M+NH4]<sup>+</sup></u><br>682.26891 amu |
| δ (ppm) | Mult. (J) | Mult. (J) Int. | Assignment            | 67.43<br>68.82                                                                         | L (CH)<br>L (CH)      | <u>Composition</u>                                                                                                                                |
| 1.09    | S         | 9              | TBDPS - tBu           | 69.75                                                                                  | Bn (CH <sub>2</sub> ) | C35H40O11Si                                                                                                                                       |
| 1.41    | d (6.5)   | 3              | L2 (CH <sub>3</sub> ) | 127.78                                                                                 | Arene                 |                                                                                                                                                   |
| 1.56    | d (6.5)   | 3              | L1 (CH <sub>3</sub> ) | 127.83                                                                                 | Arene                 |                                                                                                                                                   |
| 4.38    | q (6.5)   | 1              | L2 (CH)               | 128.34                                                                                 | Arene                 |                                                                                                                                                   |
| 4.63    | d (16)    | 1              | G3                    | 128.67                                                                                 | Arene                 |                                                                                                                                                   |
| 4.70    | dd (16)   | 1              | G3                    | 129.99                                                                                 | Arene                 |                                                                                                                                                   |
| 4.79    | dd (16)   | 4              | G1, G2                | 133.14                                                                                 | Arene                 |                                                                                                                                                   |
| 5.18    | d         | 2              | Bn                    | 133.61                                                                                 | Arene                 |                                                                                                                                                   |
| 5.26    | m         | 2              | L1 , L2 (CH)          | 135.28                                                                                 | Arene                 |                                                                                                                                                   |
| 7.37    | m         | 11             | TBDPS - o, p + Bn     | 135.90                                                                                 | Arene                 |                                                                                                                                                   |
| 7.65    | m         | 4              | TBDPS - m             | 100.53                                                                                 | G(CO)                 |                                                                                                                                                   |
|         |           |                |                       | 166.02                                                                                 | G(CO)                 |                                                                                                                                                   |
|         |           |                |                       | 160.90                                                                                 | U(CO)                 |                                                                                                                                                   |
|         |           |                |                       | 109.89                                                                                 | L(CO)                 |                                                                                                                                                   |

#### **Bn-LGGGL-Si**

**Bn-L** (1.02 g, 5.69 mmol) and **GGGL-Si** (2.367 g, 4.01 mmol) were dissolved in 50 mL DCM. DPTS (0.305 g, 1.04 mmol) was added and allowed to dissolved before the addition of DCC (1.17 g, 5.17 mmol). The reaction vessel was capped and the reaction was allowed to stir at RT overnight. The solution was filtered, concentrated *in vacuo*, and purified by column chromatography using 10% ethyl acetate in hexanes. Product eluted in fractions 10-18 (250 mL fractions). 2.90 g yield (84%).

|                                              |                                                         |                                                                                                                                            | LGG                                                      | GL-Si                                                                                                                                                                                                                           |                                                                                                                                  |
|----------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                              |                                                         |                                                                                                                                            |                                                          | <sup>13</sup> C-NMR (400 MHz, CDCl <sub>3</sub> )                                                                                                                                                                               | HRMS (ESI)                                                                                                                       |
| но<br>L1                                     |                                                         |                                                                                                                                            |                                                          | δ (ppm) + Assignment<br>16.94 L (CH <sub>3</sub> )<br>19.38 TBDPS (C)<br>21.40 L (CH <sub>3</sub> )<br>26.95 TBDPS (CH <sub>3</sub> )<br>60.33 G (CH <sub>2</sub> )<br>60.77 G (CH <sub>2</sub> )<br>61.09 G (CH <sub>2</sub> ) | <u>Calc. Mass</u><br>574.19 amu<br><u>Calc. [M+NH4]<sup>+</sup></u><br>592.22 amu<br><u>Found</u><br>[ <u>M+NH4]<sup>+</sup></u> |
| δ (ppm)<br>1.09<br>1.41                      | Mult. (J)<br>s<br>d (6.5)                               | MR (400 MHz, CDCl3)           . (J)         Int.         Assignmen           9         TBDPS - tBu           5)         3         L2 (CH3) | Assignment<br>TBDPS - tBu<br>L2 (CH <sub>3</sub> )       | 67.43 L (CH)<br>68.82 L (CH)<br>127.78 Arene<br>129.99 Arene                                                                                                                                                                    | <u>Composition</u><br>C <sub>28</sub> H <sub>34</sub> O <sub>11</sub> Si                                                         |
| 1.56<br>4.38<br>4.63<br>4.70<br>4.79<br>5.26 | d (6.5)<br>q (6.5)<br>d (16)<br>dd (16)<br>dd (16)<br>m | 3<br>1<br>1<br>1<br>4<br>2                                                                                                                 | L1 (CH3)<br>L2 (CH)<br>G3<br>G3<br>G1, G2<br>L1, L2 (CH) | 135.01       Arene         135.28       Arene         166.53       G (CO)         166.62       G (CO)         166.96       G (CO)         169.89       L (CO)                                                                   |                                                                                                                                  |
| 7.37<br>7.65                                 | m<br>m                                                  | 6<br>4                                                                                                                                     | TBDPS – o, p<br>TBDPS - m                                | 173.12 L (CO)                                                                                                                                                                                                                   |                                                                                                                                  |

#### LGGGL-Si

**Bn-LGGGL-Si** (2.90 g, 4.36 mmol) was dissolved in 45 mL ethyl acetate in a Schlenk flask to prepare a 0.1 M solution. Pd/C (0.290 g, 10% by mass) was added, and two balloons of  $H_2$  (g) were passed through the flask. A third balloon was attached to serve as a source of excess  $H_2$  (g). The reaction was stirred at RT overnight. The solution was then filtered through a thick pad of celite and concentrated to provide the pure product, 2.33 g yield (Quantitative Yield).

|                |              |           | Bn-SyLMLG             | GGL-Si |                             |          |         |                               |
|----------------|--------------|-----------|-----------------------|--------|-----------------------------|----------|---------|-------------------------------|
|                |              |           |                       | 13     | <b>C-NMR</b> (400           | MHz, CDC | 213)    | HRMS<br>(ESI)                 |
|                | ~ \          |           | $\square$             |        | $\delta$ (ppm) + Assignment |          |         |                               |
|                |              |           |                       | 16.80  | L (CH3)                     | 127.69   | Arene   | 1028.35 amu                   |
| $\sim$         | ᢤ᠋᠃ᡩᡀ᠅       | e o       |                       | 17.16  | L (CH3)                     | 128.36   | Arene   |                               |
|                | L1           | L         | 2 G1 G2 G3 L3         | 19.23  | TBDPS (C)                   | 128.66   | Arene   | Calc Mass                     |
|                |              |           |                       | 21.30  | L (CH <sub>3</sub> )        | 129.46   | Arene   | $\frac{ M+H^+ ^+}{1020.2270}$ |
|                |              |           |                       | 26.80  | TBDPS (CH <sub>3</sub> )    | 129.85   | Arene   | 1029.2379                     |
|                | 111 NMI      | • (400 MI | Jz CDCh)              | 31.90  | e                           | 132.13   | d       | annu                          |
| S (mmm)        | Maile (I)    | Let       |                       | 37.67  | b                           | 132.96   | Arene   | Found                         |
| <u>o (ppm)</u> | Muit. (J)    | 0<br>0    | TPDPS (tPu)           | 56.44  | Sv (CH <sub>3</sub> )       | 133.40   | Arene   | 1029.35679                    |
| 1.09           | s<br>d (6 4) | 3         | $I = 3 (CH_2)$        | 60.33  | G (CH <sub>2</sub> )        | 135.75   | Arene   | amu                           |
| 1.41           | d(0.4)       | 3         |                       | 60.78  | $G(CH_2)$                   | 135.92   | Arene   | Composition                   |
| 1.10           | d(6.1)       | 3         | L1 (CH <sub>3</sub> ) | 61.08  | $G(CH_2)$                   | 152.05   | Arene   | C53H60O19Si                   |
| 2.38           | a (6.8)      | 2         | e                     | 64 52  | L (CH)                      | 165.91   | Sv (CO) | 033110001751                  |
| 3 13           | m            | 2         | b                     | 67.06  | h                           | 166.52   | G(CO)   |                               |
| 2.05           |              | 6         | Str (CII-)            | 68 39  | L (CH)                      | 166.63   | G(CO)   |                               |
| 5.85<br>4.15   | s            | 2         | sy (CH3)              | 68.60  | L (CH)                      | 166.07   | G(CO)   |                               |
| 4 37           | a (6 4)      | 1         | L3 (CH)               | 69.00  | £ (CII)                     | 168.12   |         |                               |
| 4.50           | d (16)       | 1         | G3                    | 106.49 | Arono                       | 160.00   | M(CO)   |                               |
| 4.63           | d (16)       | 1         | G3                    | 100.40 | Alelie                      | 109.90   | L(CO)   |                               |
| 4.70           | m            | 4         | G1, G2                | 124.33 | C<br>A rono                 | 172.12   | L(CO)   |                               |
| 5.12           | q (6.4)      | 1         | L2 (CH)               | 127.05 | Arene                       | 1/3.12   | L (CO)  |                               |
| 5.37           | S            | 2         | Bn (CH <sub>2</sub> ) |        |                             |          |         |                               |
| 5.45           | q (6.4)      | 1         | L1 (CH)               |        |                             |          |         |                               |
| 5.60           | m            | 2         | d, e                  |        |                             |          |         |                               |
| 7.40           | m            | 13        | Sy + IBDPS o, p + Bn  |        |                             |          |         |                               |
| 1.00           | m            | 4         | I BDPS meta           |        |                             |          |         |                               |
|                |              |           |                       |        |                             |          |         |                               |
|                |              |           |                       | 1      |                             |          |         |                               |

#### **Bn-SyLMLGGGL-Si**

**Bn-SyLM** (0.725 g, 1.53 mmol) and **LGGGL-Si** (0.966 g, 1.68 mmol) were dissolved in 16 mL DCM. DPTS (0.090 g, 0.31 mmol) was added and allowed to dissolved before the addition of DCC (0.378 g, 1.68 mmol). The reaction vessel was capped and the reaction was allowed to stir at RT overnight. The solution was filtered, concentrated *in vacuo*, and purified by column chromatography using 10% ethyl acetate in hexanes. Product eluted in fractions 10-18 (250 mL fractions). 0.947 g yield (60%).

|         |                    |           | SyLMLGO               | GGL-Si |                             |          |                  |                                |
|---------|--------------------|-----------|-----------------------|--------|-----------------------------|----------|------------------|--------------------------------|
|         |                    |           | <u>^</u>              | 13     | <b>C-NMR</b> (400           | MHz, CDC | l <sub>3</sub> ) | HRMS<br>(ESI)                  |
|         |                    |           |                       |        | $\delta$ (ppm) + Assignment |          |                  |                                |
| HO' CI  |                    |           |                       | 16.80  | L (CH <sub>3</sub> )        | 127.69   | Arene            | 938.30 amu                     |
| Ý, ť    | י ר א ג`י          | , or Y    | I I . L Y /           | 17.16  | L (CH <sub>3</sub> )        | 129.46   | Arene            |                                |
|         | L1                 | L2        | G1 G2 G3 L3           | 19.23  | TBDPS (C)                   | 129.85   | Arene            | Calc Mass                      |
|         |                    |           |                       | 21.30  | L (CH3)                     | 132.13   | d                | $\frac{[M+H^{+}]^{+}}{020.21}$ |
|         |                    |           |                       | 26.80  | TBDPS (CH3)                 | 132.96   | Arene            | 939.31 annu                    |
|         | <sup>1</sup> H_NMI | 2 (400 MH | $z (DCl_2)$           | 31.90  | e                           | 133.40   | Arene            | Found                          |
| § (nnm) | Mult (I)           | Int       | Assignment            | 37.67  | b                           | 135.75   | Arene            | 939.31042                      |
| 1 09    | Mult. (J)          | 0<br>0    | TRDPS (tRu)           | 56.44  | Sy (CH <sub>3</sub> )       | 135.92   | Arene            | amu                            |
| 1.09    | d (6 4)            | 3         | L3 (CH <sub>2</sub> ) | 60.33  | G (CH <sub>2</sub> )        | 152.05   | Arene            | Composition                    |
| 1.11    | d (6.4)            | 3         | L2 (CH3)              | 60.78  | G (CH <sub>2</sub> )        | 165.91   | Sy(CO)           | C46H54O19Si                    |
| 1.68    | d (6.4)            | 3         | L1 (CH <sub>3</sub> ) | 61.08  | G (CH <sub>2</sub> )        | 166.52   | G (CO)           | 040113401951                   |
| 2.38    | q (6.8)            | 2         | e                     | 64.52  | L (CH)                      | 166.63   | G (CO)           |                                |
| 3.13    | m                  | 2         | b                     | 67.06  | b                           | 166.97   | G (CO)           |                                |
| 3 85    | s                  | 6         | Sv (CH <sub>3</sub> ) | 68.39  | L (CH)                      | 168.12   | M (CO)           |                                |
| 4.15    | m                  | 2         | f                     | 68.60  | L (CH)                      | 169.90   | L (CO)           |                                |
| 4.37    | q (6.4)            | 1         | L3 (CH)               | 69.48  | f                           | 170.86   | L (CO)           |                                |
| 4.50    | d (16)             | 1         | G3                    | 106.48 | Arene                       | 173.12   | L (CO)           |                                |
| 4.63    | d (16)             | 1         | G3                    | 124.53 | c                           |          | ()               |                                |
| 4.70    | m                  | 4         | G1, G2                | 127.63 | Arene                       |          |                  |                                |
| 5.12    | q (6.4)            | 1         | L2 (CH)               | 127.05 | 1 ii ciic                   |          |                  |                                |
| 5.45    | q (6.4)            | 1         | LI (CH)               |        |                             |          |                  |                                |
| 5.60    | m                  | 2         | d, e                  |        |                             |          |                  |                                |
| 7.40    | m                  | 8         | Sy + IBDPS 0,p        |        |                             |          |                  |                                |
| 1.05    | 111                | 4         | I DDF 5 meta          |        |                             |          |                  |                                |
|         |                    |           |                       |        |                             |          |                  |                                |

#### SyLMLGGGL-Si

A 0.60 M solution of **Bn-SyLMLGGGL-Si** (0.947 g, 0.92 mmol) was prepared in DCM. A 0.60 M solution of palladium (II) acetate (0.0093 g, 0.041 mmol), triethylamine (16  $\mu$ L, 0.0124 mmol), and triethylsilane (205  $\mu$ L, 1.29 mmol) was prepared and allowed to stir for 30 min. The solution of **Bn-SyLMLGGGL-Si** was then added dropwise over the course of five minutes. The reaction was allowed to stir at RT overnight. The solution was quenched with 10 mL saturated aqueous ammonium chloride solution and the organic layer was extracted 3x with DCM. The organic phase was dried with magnesium sulfate, filtered, and concentrated *in vacuo* to yield the crude product as a yellow oil. The product was purified by column chromatography using 10% ethyl acetate in hexanes to yield pure product as a white solid (0.332 g, 38%).

|                |              |              | SyLMLG                        | GGL                |                      |           | _       |                               |
|----------------|--------------|--------------|-------------------------------|--------------------|----------------------|-----------|---------|-------------------------------|
|                |              |              |                               | 13                 | C-NMR (400           | MHz, CDO  | Cl3)    | HRMS (ESI)                    |
| ů a            | l            |              |                               |                    | $\delta$ (ppm) + A   | ssignment |         | Calc. Mass                    |
| HO             |              | i f O        |                               | 16.80              | L (CH <sub>3</sub> ) | 129.46    | Arene   | 700.19 amu                    |
| $\sim$         | ° Turk       | e o o o o    |                               | 17.16              | L (CH <sub>3</sub> ) | 132.13    | d       |                               |
| 0              | L1           | L2           | G1 G2 G3 L3                   | 19.23              | TBDPS                | 152.33    | Arene   | Calc Mass                     |
|                |              |              |                               | (C)                |                      | 165.91    | Sy (CO) | $\frac{[M+H^+]^+}{701,107}$   |
|                |              |              |                               | 21.30              | L (CH3)              | 166.52    | G (CO)  | /01.19/ amu                   |
|                | 111 NME      | 0 (400 MHz ( |                               | 26.80              | TBDPS                | 166.54    | G (CO)  | Found                         |
|                |              | (400 MITZ, C | <u>(DC13)</u>                 | (CH <sub>3</sub> ) |                      | 166.76    | G(CO)   | $701 \frac{10000}{19355}$ amu |
| <u>o (ppm)</u> | Mult. (J)    | Int.         | Assignment                    | 31.90              | e                    | 168.21    | M (CO)  |                               |
| 1.41           | m<br>4 (6 4) | 0            | $L_2, L_3$ (CH <sub>3</sub> ) | 37.67              | b                    | 169.90    | L(CO)   | Composition                   |
| 1.08           | d(0.4)       | 2            | LI (CH3)                      | 56.44              | Sy                   | 170.90    | I(CO)   | C30H36O19                     |
| 2.38           | q (0.8)      | 2            | e                             | (CH3)              |                      | 175.11    | L(CO)   |                               |
| 3.17           | m            | 2            | D<br>Sv (CHa)                 | 60.33              | $G(CH_2)$            | 175.11    | L(CO)   |                               |
| 3.88<br>4.15   | s<br>m       | 2            | Sy (C113)<br>f                | 60.78              | $G(CH_2)$            |           |         |                               |
| 4 41           | a (64)       | 1            | L3 (CH)                       | 61.08              | G (CH <sub>2</sub> ) |           |         |                               |
| 4.80           | q (0.1)<br>m | 6            | G1. G2. G3                    | 64.52              | L (CH)               |           |         |                               |
| 5.12           | q (6.4)      | 1            | L2 (CH)                       | 67.06              | b                    |           |         |                               |
| 5.45           | q (6.4)      | 1            | L1 (CH)                       | 68.39              | L (CH)               |           |         |                               |
| 5.60           | m            | 2            | <b>d</b> , <b>e</b>           | 68.60              | L (CH)               |           |         |                               |
| 7.37           | S            | 2            | Sy                            | 69.48              | f                    |           |         |                               |
|                |              |              |                               | 107.12             | Arene                |           |         |                               |
|                |              |              |                               | 124.53             | c                    |           |         |                               |
|                |              |              |                               | 127.63             | Arene                |           |         |                               |
|                |              |              |                               | 127.05             | 1                    |           |         |                               |

#### SyLMLGGGL

**SyLMLGGGL-Si** (0.332 g, 0.331 mmol) was dissolved in 3.3 mL THF to prepare a 0.1 M solution. The flask was cooled to 0 °C. TBAF (0.50 mL as a 1.0 M solution in THF, 0.50 mmol) was added to a vial and acetic acid (35  $\mu$ L, 0.60 mmol) was added. The vial was vortexed briefly and this solution was added steadily to the solution of starting material. The reaction was warmed to RT over the course of 1 h and the reaction was quenched with 5 mL brine. The organics were extracted 3x with ethyl acetate, were dried with magnesium sulfate, filtered, and concentrated *in vacuo* to provide the crude product as a yellow oil. The product was purified by column chromatography (25% ethyl acetate in hexanes increased gradually to 90% ethyl acetate in hexanes). The product was a white solid (0.151 g, 65%).

|              |                    |                   | Cyc-SyLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ILGGGL |                               |          |                   |                                                                      |
|--------------|--------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|----------|-------------------|----------------------------------------------------------------------|
|              | 0                  | oa b              | d f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13     | <b><sup>3</sup>C-NMR</b> (400 | MHz, CDO | Cl <sub>3</sub> ) | HRMS<br>(ESI)                                                        |
|              | <u>آ</u> ل         | - \\ c            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | $\delta$ (ppm) + Assignment   |          |                   |                                                                      |
|              |                    | 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.80  | L (CH3)                       | 129.46   | Arene             | 682.17 amu                                                           |
|              | Ó                  | L1                | in the second seco | 17.16  | $L(CH_3)$                     | 132.13   | d                 |                                                                      |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.23  | TBDPS (C)                     | 152.33   | Arene             | $\underline{\text{Calc Mass}}$                                       |
|              |                    | •                 | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.30  | L (CH3)                       | 165.91   | Sy (CO)           | $\frac{ M+H' }{682,18}$                                              |
|              | $\triangleleft$    |                   | G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.80  | TBDPS (CH <sub>3</sub> )      | 166.52   | G(CO)             | 085.18 amu                                                           |
|              |                    | L3                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.90  | e                             | 166.54   | G (CO)            | Found                                                                |
|              | 0 0                | 0                 | G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.67  | b                             | 166.76   | G(CO)             | 683.18207                                                            |
|              |                    |                   | 3 / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.44  | Sy (CH <sub>3</sub> )         | 168.21   | M (CO)            | amu                                                                  |
|              |                    | 0                 | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.33  | G (CH <sub>2</sub> )          | 169.90   | L (CO)            | Composition                                                          |
|              |                    |                   | ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.78  | G (CH <sub>2</sub> )          | 170.90   | L (CO)            | $\frac{\text{composition}}{\text{C}_{30}\text{H}_{34}\text{O}_{18}}$ |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61.08  | G (CH <sub>2</sub> )          | 175.11   | L (CO)            | - 50 51 - 10                                                         |
|              | <sup>1</sup> H-NMF | <b>R</b> (400 MHz | , CDCl3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64.52  | L (CH)                        |          |                   |                                                                      |
| δ (ppm)      | Mult. (J)          | Int.              | Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.06  | b                             |          |                   |                                                                      |
| 1.39         | d (6.4)            | 3                 | L (CH3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.39  | L(CH)                         |          |                   |                                                                      |
| 1.68         | m                  | 6                 | L (CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68.60  | L (CH)                        |          |                   |                                                                      |
| 2.35         | q (6.8)            | 2                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.48  | f                             |          |                   |                                                                      |
| 3.17         | m                  | 2                 | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.12 | Arene                         |          |                   |                                                                      |
| 3.86         | S                  | 6                 | Sy (CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124 53 | c                             |          |                   |                                                                      |
| 4.15         | m                  | 2                 | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127.63 | Arene                         |          |                   |                                                                      |
| 4.80         | m                  | 6                 | G1, G2, G3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.05 | 7 trene                       |          |                   |                                                                      |
| 5.10         | q (6.4)            | 1                 | L2 (CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                               |          |                   |                                                                      |
| 5.45         | q (6.4)            | 1                 | LI (CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                               |          |                   |                                                                      |
| 5.50         | q (6.4)            | 1                 | LS (CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                               |          |                   |                                                                      |
| 5.00<br>7.36 | 111                | 2                 | u, e<br>Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                               |          |                   |                                                                      |
| 7.50         | 5                  | 2                 | Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                               |          |                   |                                                                      |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                               |          |                   |                                                                      |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                               |          |                   |                                                                      |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                               |          |                   |                                                                      |
|              |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                               |          |                   |                                                                      |

#### Cyc-SyLMLGGGL

**SyLM(L<sub>3</sub>G<sub>2</sub>)** (0.113 g, 0.16 mmol) was dissolved in 2.5 mL dichloroethane and injected to a solution of DCC (0.066 g, 0.32 mmol) and DPTS (0.023 g, 0.08mmol) in 2.5 mL dichloroethane at 60°C over a span of 16 hours. The solution was allowed to stir for an additional 24 hours before being filtered and concentrated to obtain the crude product. A column loaded with 15% ethyl acetate in hexanes was used to purify the product (0.070 g, 64%), a white solid.

| Polymers – LGLGL, LGGGL-2.5, LGGGL-5, LGGGL-10, LGGGL-20 |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|---------------------------------------------------|--------|--------|----------------------|--|--|--|--|
|                                                          | LGLGL<br>LGGGI<br>LGGGI<br>LGGGI<br>LGGGI | - x = 1.00<br>L-2.5 x = 0.975<br>L-5 x = 0.950<br>L-10 x = 0.90<br>L-20 x = 0.80 | y = 0.00<br>y = 0.025<br>y = 0.050<br>y = 0.10<br>y = 0.20 | 13                          | <sup>13</sup> C-NMR (400 MHz, CDCl <sub>3</sub> ) |        |        |                      |  |  |  |  |
| Г.                                                       |                                           | <br>k                                                                            | ,                                                          | $\delta$ (ppm) + Assignment |                                                   |        |        |                      |  |  |  |  |
| <u>∔</u> . L1                                            | L                                         | <sup>₄</sup> ݤ <sup>ݑ</sup> ᢩ <sup>ţ</sup> ᠯᡛᡲ᠙                                  |                                                            | 16.58                       | L (CH <sub>3</sub> )                              | 127.73 | Arene  | LGLGL                |  |  |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                   | ୍ବ୍                                       |                                                                                  |                                                            | 16.66                       | L1(CH <sub>3</sub> )                              | 129.44 | Arene  | Mn = 54              |  |  |  |  |
| o j - Jm                                                 |                                           | ² <sup>م</sup> ۲                                                                 | L2 GError G2                                               | 16.91                       | L (CH <sub>3</sub> )                              | 132.38 | f      | kDa, Đ =             |  |  |  |  |
| L odd                                                    |                                           | <b>`</b> 0^                                                                      |                                                            | 17.02                       | L (CH <sub>3</sub> )                              | 152.09 | Arene  | 1.22                 |  |  |  |  |
| 0                                                        | Ö                                         |                                                                                  | Ö Ö                                                        | 31.69                       | g                                                 | 165.08 | S      | LCCCL 25             |  |  |  |  |
|                                                          | 111 114                                   |                                                                                  |                                                            | 37.77                       | d                                                 | 166.19 | G (CO) | LGGGL-2.5 $Mn = 54$  |  |  |  |  |
|                                                          | H-NM                                      | IR (400 MHZ,                                                                     | CDCI3)                                                     | 56.43                       | c                                                 | 166 30 | G(CO)  | $kDa \overline{D} =$ |  |  |  |  |
| <u>ð (ppm)</u>                                           | $\frac{\text{Mult.}(J)}{1(7.1)}$          | Int.                                                                             | Assignment                                                 | 60.42                       | G (CH <sub>2</sub> )                              | 167.90 | t (00) | 1.22                 |  |  |  |  |
| 1.36                                                     | d(/.1)                                    | 3                                                                                | $L(CH_3)$                                                  | 60.97                       | $G(CH_2)$                                         | 169.25 | L(CO)  |                      |  |  |  |  |
| 1.49                                                     | u (7.1)                                   | 5                                                                                | $L(CH_3)$                                                  | 64.32                       | L (CH)                                            | 169.23 | L(CO)  | LGGGL-5              |  |  |  |  |
| 2.35                                                     | m<br>a (6.8)                              | 2                                                                                | L (CH3)                                                    | 68 50                       | L (CH)                                            | 170.06 | L(CO)  | Mn = 50              |  |  |  |  |
| 2.55                                                     | q (0.8)                                   | 2                                                                                | š                                                          | 60.07                       |                                                   | 175.65 | L(CO)  | kDa, Đ =             |  |  |  |  |
| 3.16                                                     | m                                         | 2                                                                                | d                                                          | 60.22                       |                                                   | 1/5.05 | L(CO)  | 1.23                 |  |  |  |  |
| 3.85                                                     | S<br>t (( P)                              | 6                                                                                | C                                                          | 09.55                       | L(CH)                                             |        |        | LCCCL 10             |  |  |  |  |
| 4.11                                                     | l(0.8)                                    | 2                                                                                | K<br>C1 C2                                                 | 69.57                       | ĸ                                                 |        |        | LGGGL-10 $Mn = 50$   |  |  |  |  |
| 4.03                                                     | d(10)                                     | 1                                                                                | G1, G2                                                     | 106.65                      | Arene                                             |        |        | $kD_2 = 0$           |  |  |  |  |
| 4 72                                                     | d(16)                                     | 1                                                                                | G1, G2<br>G1, G2                                           | 124.51                      | e                                                 |        |        | 1.24                 |  |  |  |  |
| 4.85                                                     | d (16)                                    | 1                                                                                | G1, G2                                                     |                             |                                                   |        |        | 1.21                 |  |  |  |  |
| 4.6 - 4.9                                                | m                                         | $\sim 0 - 0.3$                                                                   | GError                                                     |                             |                                                   |        |        | LGGGL-20             |  |  |  |  |
| 5.03                                                     | q (7.1)                                   | 1                                                                                | L (CH)                                                     |                             |                                                   |        |        | Mn = 49              |  |  |  |  |
| 5.22                                                     | q (7.1)                                   | 1                                                                                | L (CH)                                                     |                             |                                                   |        |        | kDa, Đ =             |  |  |  |  |
| 5.46                                                     | q (7.1)                                   | l                                                                                | L (CH)                                                     |                             |                                                   |        |        | 1.24                 |  |  |  |  |
| 5.50                                                     | q (7.1)                                   | 1                                                                                | L (CH)                                                     |                             |                                                   |        |        |                      |  |  |  |  |
| 7.36                                                     | S                                         | 2                                                                                | m                                                          |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            |                             |                                                   |        |        |                      |  |  |  |  |
|                                                          |                                           |                                                                                  |                                                            | I                           |                                                   |        |        | I                    |  |  |  |  |

#### Polymerizations to prepare LGLGL, LGGGL-2.5, LGGGL-5, LGGGL-10, and LGGGL-20

Each monomer was dissolved in chloroform to prepare a 100 mg/mL solution. Each solution was pipetted using a micropipettor into a dram vial to prepare five 1,500  $\mu$ L solution mixtures (Base sequence : Erromer = 1,500  $\mu$ L : 0  $\mu$ L, 1462  $\mu$ L : 37  $\mu$ L, 1425  $\mu$ L : 75  $\mu$ L, 1350  $\mu$ L : 150  $\mu$ L, and 1200  $\mu$ L : 300  $\mu$ L). The solutions were concentrated *in vacuo* to produce the solid mixtures ready for polymerization.

The polymerizations were performed with dry DCM obtained from a solvent system. A stock solution of Grubbs II was prepared and the appropriate volume was pipetted into each vial such that the reaction concentration was 0.7 M and 1.50 mol% catalyst was used. The vials were purged with nitrogen and

sealed. Within 20 minutes, both solutions became very viscous. The reactions were left to react for 2 hours before quenching with 0.05 mL of ethyl vinyl ether. The vials were then concentrated *in vacuo* and placed in a vacuum chamber overnight. NMR spectra and SEC traces were collected on the following day. The polymers were reprecipitated in 500 mL cold methanol and allowed to stir for a half hour before filtering.

#### **Solution Casting of Thick Polymer Films**

The polymers were dissolved in methylene chloride to make 100 mg/mL solutions. On the bottom of flat differential scanning calorimetry pans, 28 uL of this solution was cast onto each (with a 10-200 uL micropipettor), very carefully to create a convex droplet that covered the entire surface. The best films were prepared by first coating the perimeter of the slide and then filling in the middle. The solution was allowed to dry on the slides for 3 hours before being placed in a vacuum chamber. After 2 days, those films that contained bubbles were removed from the glass slides using a razor blade and re-dissolved to prepare a 100 mg/mL solution. Films used for the hydrolysis study contained no bubbles, tears, or noticeable defects. The films were tan and transparent.

Film thicknesses were measured on representative films cut through the center using optical profilometry. A Bruker Contour Elite I optical profilometer was used. Samples were sliced to create a step indicative of film thickness and then analyzed.

#### **Hydrolysis Study**

Polymer films, removed from glass slides, were placed in dram vials followed by the addition of 2 mL 10x phosphate buffer solution, pH = 7.4 The vials were capped and placed in an incubator set at 37 °C. The films were placed on a rotating platform with a slow speed of 8 rpm to promote gentle mixing and to prevent localized concentration of acidic monomer around the films. The pH of the buffer solution was monitored over time and showed no distinguishable change. When timepoints were collected, the appropriate films were removed from the incubator, removed from the buffer solution, and blotted dry with a paper towel. Photographs were taken of each film at this point. The films were then rinsed with deionized water, blotted dry again and placed in new vials. Liquid N<sub>2</sub> was poured over the films and the films were placed in a lyophilizer for several hours. A full film was used for SEC analysis (~3 mg) and DSC analysis on weeks 2, 4, 6, 8, and 10.

3. Experimental Spectra



Figure S4. <sup>13</sup>C NMR spectra of the L-carbonyl region.



Figure S5. <sup>1</sup>H NMR spectral comparisons of the L/G/M region for Cyc-SyLMLGLGL and Cyc-SyLMLGGGL, in addition to the HRMS spectra of Cyc-SyLMLGGGL.











JAN-EN111-59; Bn-LGGGL-S1; CDC13; 1H; 500MHz 16 scans; 10.27.17















JAN-EN111-85; 5% Error; 1H





JAN-EN111-85; 20% Error; 1H



# SEC Plots



Figure S6. SEC plots of copolymers, Week 2 of hydrolysis.



Figure S7. SEC plots of copolymers, Week 3 of hydrolysis.



Figure S8. SEC plots of copolymers, Week 4 of hydrolysis.



Figure S9. SEC plots of copolymers, Week 5 of hydrolysis.



Figure S10. SEC plots of copolymers, Week 6 of hydrolysis.



Figure S11. SEC plots of copolymers, Week 7 of hydrolysis.



Figure S12. SEC plots of copolymers, Week 8 of hydrolysis.



Figure S13. SEC plots of copolymers, Week 9 of hydrolysis.



Figure S14. SEC plots of copolymers, Week 10 of hydrolysis.

# References

1. Nowalk, J. A.; Fang, C.; Short, A. L.; Weiss, R. M.; Swisher, J. H.; Liu, P.; Meyer, T. Y., Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. *Journal of the American Chemical Society* **2019**.