A fluorescent platinum(II) metallacycle-cored supramolecular network formed by dynamic covalent bonds and its application in halogen ions and picric acid detection

Yali Hou,^a Shusheng Li,^b Zeyuan Zhang,^a Long Chen, ^a Mingming Zhang^{*a}

^aState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an,

710049, P. R. China

^bCollege of Chemistry and Chemical Engineering, University of Jinan, 250022, China

Supporting Information

1.	Material and methods	S2
2.	Synthesis of ligand 1	S3
	2.1 Synthesis of compound 6	S3
	2.2 Synthesis of ligand 1	S4
3.	Synthesis of compound 2	S 5
4.	Self-assembly of hexagonal metallacycle 3	S 6
5.	5. Synthesis of FSN 5	
6.	Absolute fluorescence quantum yields	S10
7.	NMR characterization of FSN 5 after the addition of halide ions	S12
References		S13

1. Material and methods

All reagents and deuterated solvents were commercially available and used without further purification. Compounds $1^{S1, S2}$, 2^{S3} and 4^{S4} were synthesized according to the published procedure. NMR spectra were recorded on a Bruker Avance 400 MHz or 600 MHz spectrometer. ¹H NMR chemical shifts are reported relative to residual solvent signals, and ${}^{31}P{}^{1}H{}$ NMR chemical shifts are referenced to an external unlocked sample of 85% H₃PO₄ (δ 0.0). Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization with a MassLynx operating system. The melting points were collected on a Mettler FP-82 HT hot stage. The UV-vis experiments were conducted on a Lambda 950 absorption spectrophotometer. The fluorescent experiments were conducted on a Hitachi F-7100 fluorescence spectrophotometer. The absolute fluorescence quantum yields were conducted on an Edinburgh FLS9 fluorescence spectrophotometer. Scanning electron microscope (SEM) investigations were carried out on a GeminiSEM 500 instrument.

The samples for fluorescent titration measurements were prepared as follows. The solution of FSN 5 ([FSN 5] = 10 μ M in metallacycle concentration) was first prepared. Then different concentrations of halide ions or picric acid were added into the solution of FSN 5.

2. Synthesis of ligand 1

Scheme S1. Synthetic routes of ligand 1.

2.1 Synthesis of compound 6

7.01 7.05 7.05 7.05 7.01 7.01

-9.84

A solution of POCl₃ (3.50 ml) in DMF was added to a solution of 4,4' - dibromotriphenylamine (1.00 g, 2.40 mmol) in DMF at 0 °C. After addition, the reaction mixture was stirred at room temperature for 1 h and then heated at 90 °C under argon for another 10 h. After cooling to room temperature, the reaction mixture was quenched with cool water, and 1M NaOH solution was added. The system was extracted with CHCl₃ (100 mL × 3), the combined organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica: dichloromethane/*n*-hexane, 1:1) to give compound **6** (0.75 g, 78%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃, 295 K) δ 9.84 (s, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 4H), 7.06 – 6.99 (m, 6H). The ¹H NMR spectrum of **6** matches well with the reported data.^{S1}

-1.56

Fig. S1. Partial ¹H NMR (400 MHz, CDCl₃, 295 K) spectrum recorded for compound 6.

2.2 Synthesis of ligand 1

Compound **6** (0.82 g, 1.91 mmol), pyridin-4-ylboronic acid (1.41 g, 11.5 mmol), K₂CO₃ (3.17 g, 22.9 mmol), tetrabutylammonium bromide (TBAB) (38.0 mg, 0.12 mmol) and Pd(PPh₃)₄ (0.22 g, 0.19 mmol) were added to a mixture of toluene (32.0 ml), ethanol (8.0 mL) and water (8.0 mL). The reaction mixture was stirred at 80 °C for 48 h under nitrogen atmosphere. After cooling to room temperature, the product was concentrated and purified by flash column chromatography with dichloromethane/methanol (100:1, v/v) as the eluent to afford compound **1** (0.57 g, 70 %) as yellow powder. M. P. 119.2–121°C. ¹H NMR (400 MHz, CD₂Cl₂, 295 K) δ 9.87 (s, 1H), 8.64 (d, *J* = 6.1 Hz, 4H), 7.77 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 4H), 7.58 (d, *J* = 6.1 Hz, 4H), 7.30 (d, *J* = 8.6 Hz, 4H), 7.20 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (151 MHz, CD₂Cl₂, 295 K) δ 190.65, 152.81, 150.73, 147.40, 134.71, 131.52, 130.94, 128.67, 126.50, 121.68, 121.46. The ¹H NMR spectrum of **1** matches well with the reported data.⁵²

Fig. S2. Partial ¹H NMR (400 MHz, CD₂Cl₂, 295 K) spectrum recorded for ligand 1.

3. Synthesis of compound 2

Compound **2** was synthesized according to literature procedure.^{S3} The ¹H NMR and ³¹P NMR of **2** match well with the reported data.

 .64	4 7
	1-

4. Self-assembly of hexagonal metallacycle 3

In a 1:1 molar ratio, 4-(bis(4-(pyridin-4-yl)phenyl)amino)benzaldehyde **1** (3.14 mg, 0.007 mmol) and 120° diplatinum acceptor **2** (9.85 mg, 0.007 mmol) were dissolved in 4.0 mL dichloromethane in a sealed vial. The reaction mixture was stirred at 40 °C for 8 h and then cooled to room temperature. The solution was filtered and the solvent was removed by nitrogen flow. The orange solid **3** (11.27 mg, 91 %) was gained by recrystallization through dichloromethane/diethyl ether twice. ¹H NMR (400 MHz, CD₂Cl₂, 295 K) δ 9.92 (s, 1H), 8.67 (d, *J* = 6.2 Hz, 4H), 7.99 (d, *J* = 6.2 Hz, 4H), 7.89 (d, *J* = 8.6 Hz, 4H), 7.83 (d, *J* = 8.6 Hz, 2H),

7.55 (dd, J = 18.8, 7.9 Hz, 8H), 7.37 (d, J = 8.5 Hz, 5H), 7.28 (d, J = 8.5 Hz, 2H), 1.46 – 1.31 (m, 24H), 1.19 – 1.11 (m, 36H).³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 295 K) δ (ppm): 13.13 ppm (s, ¹⁹⁵Pt satellites,¹ $J_{Pt-P} = 2658.42$ Hz). ESI-TOF-MS: m/z 735.2419 [**3** – 6OTf]⁶⁺, 912.1045 [**3** – 5OTf]⁵⁺, 1177.4525 [**3** – 4OTf]⁴⁺, 1619.6833 [**3** – 3OTf]³⁺.

Fig. S6. Partial ¹H NMR spectrum (400 MHz, CD₂Cl₂, 295 K) recorded for metallacycle 3.

Fig. S7. Partial ³¹P{¹H} NMR spectrum (162 MHz, CD_2Cl_2 , 295K) recorded for metallacycle **3**.

Fig. S8. ESI-TOF-MS spectrum of metallacycle 3.

5. Synthesis of FSN 5

In a 2:3 molar ratio, a solution of metallacycle **3** (53.20 mg, 0.01 mmol) in CHCl₃ (2.00 mL) was added dropwise into a solution of linker **4** ($M_n = 2000$, PDI =1.18, 30.00 mg, 0.015 mmol) in CHCl₃ (2.00 mL). The reaction mixture was stirred at 60 °C for 8 h, then dried under vacuum at 40 °C. A yellow polymer (80.85 mg, 98 %) was obtained. ¹H NMR (400 MHz, CD₂Cl₂, 295 K) δ 8.63 (s, 4H), 8.27 (s, 1H), 7.96 (s, 4H), 7.86 – 7.62 (m, 6H), 7.61 – 7.37 (m, 8H), 7.36 – 7.09 (m, 6H), 3.59 (s, 2H), 2.62 (t, *J* = 7.0 Hz, 3H). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 295 K) δ (ppm): 13.15 ppm (s, ¹⁹⁵Pt satellites, ¹*J* _{Pt-P} = 2668.14 Hz).

Fig. S9. Partial ¹H NMR spectrum (400 MHz, CD₂Cl₂, 295 K) recorded for FSN 5.

Fig. S10. Partial ³¹P{1H} NMR spectrum (162 MHz, CD₂Cl₂, 295K) recorded for FSN 5.

Fig. S11. ¹H NMR spectra (400 MHz, CD₂Cl₂, 295 K) recorded for metallacycle **3** (bottom), linker **4** (top), and FSN **5** (middle).

6. Absolute fluorescence quantum yields

Fig. S12. Absolute fluorescence quantum yield of ligand 1 in the solid state.

S11

Fig. S13. Absolute fluorescence quantum yield of ligand 1 in CH₂Cl₂.

Fig. S14. Absolute fluorescence quantum yield of metallacycle 3 in the solid state.

Fig. S15. Absolute fluorescence quantum yield of metallacycle 3 in CH₂Cl₂.

Fig. S16. Absolute fluorescence quantum yield of FSN 5 in the solid state.

Fig. S17. Absolute fluorescence quantum yield of solid FSN 5 in CH₂Cl₂.

7. NMR characterization of FSN 5 after the addition of halide ions

Fig. S18. Partial (a–g) ${}^{31}P{1H}$ and (h–n) ${}^{1}H$ NMR spectra (162 or 400 MHz, CD₂Cl₂, 298 K) of ligand **1** (h), platinum acceptor **2** (a), metallacycles **3** (b and i), FSN **5** (c and j), and FSN **5** after the addition of TBAF (d and k), TBAC (e and i), TBAB (f and m), and TBAI (g and n).

Fig. S19. ³¹P{¹H} NMR spectrum (162 MHz, CD_2Cl_2 , 295K) of FSN **5** (a), FSN **5** after the addition of TBAB (b) and the bromide precursor of diplatinum(II) ligand **2** (c).

References

- S1. Y. Fu, J. Yao, W. Xu, T. Fan, Q. He, D. Zhu, H. Cao and J. Cheng, Polym. Chem. 2015, 6, 2179.
- S2. N.-N. Ji, Z.-Q. Shi, H.-L. Hu and H.-G. Zheng, Dalton Trans, 2018, 47, 7222.
- S3. H.-B. Yang, K. Ghosh, B. H. Northrop, Y.-R.Zheng, M. M. Lyndon, D. C. Muddiman and P. J. Stang, J. Am. Chem. Soc. 2007, 129, 14187.
- F. Dong, X. Wang, S. Li, J. Hao, X. Tang, R. Kuang, Y. Wang and S. Feng, *Polym. Adv. Technol.*, 2019, **30**, 932.