Supporting Information

Guanidine as inexpensive dual function ligand and reducing agent for ATRP of methacrylates

Madson R.E. Santos^{a‡} Sílvia M. Ferreir^{b‡} Patrícia V. Mendonça,^{*a} Francesco De Bonb^b Armenio C. Serra[†] and Jorge F. J. Coelho^{*†}

^aCEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal

^bDepartment of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

*E-mail addresses: jcoelho@eq.uc.pt (Jorge F. J. Coelho) and patmend@eq.uc.pt (Patrícia V. Mendonça)

Table ST1. Results of the Cu⁰-mediated ATRP of MMA using TMG as the ligand and freeze-thaw degassing procedure (replicate experiments). Conditions: $[MMA]_0/[EBPA]_0/[TMG]_0/[CuB_2]_{0;}$ 222/1/0.5/0.1, $[MMA]_0/[DMSO] = 1/0.5$ (v/v); t = 6.5 h; T = 30 °C; Cu⁰_{wire}: *l* = 5 cm, *d* = 1 mm.

Entry	Conv. (%)	$M_{\rm n}^{\rm th}$ x 10 ⁻³	M _n ^{SEC} x 10 ⁻³	Ð	$I_{\rm eff}(\%)$
1	64	15.0	21.4	1.29	70
2	66	15.0	48.8	2.32	30
3	71	16.9	74.6	1.49	22

Figure SF1. 400 MHz ¹H NMR, in CHCl₃, of ethyl α-bromophenyl acetate (EBPA).

Figure SF2. 400 MHz ¹H NMR, in CHCl₃, of 1,1,3,3-tetramethylguanidine (TMG).

Figure SF3. 400 MHz ¹H NMR, in CHCl₃, of a $[EBPA]_0/[TMG]_0 = 1/1$ (molar)

Figure SF 4. SEC traces of a PMMA-Br ($M_n^{SEC} = 10 \ge 10^3$; $M_w/M_n = 1.12$) prepared by SARA ATRP using TMG as the ligand (black line) and a PMMA standard (blue line).

Figure SF5. MALDI-TOF MS spectrum of PMMA-Br ($M_n^{\text{SEC}} = 7000$, $M_w/M_n = 1.14$) from m/z 500 to 7500, using DCTB matrix.

Figure SF6. SEC traces of the polymethacrylates obtained by SARA ATRP.

Figure SF7. 400 MHz ¹H NMR spectrum, in CHCl₃, of PGMA-Br homopolymer ($M_n^{\text{th}} = 22600$, $M_n^{\text{SEC}} = 37300$, $M_w/M_n = 1.31$).

Figure SF8. 400 MHz ¹H NMR spectrum, in CHCl₃, of PEMA-Br homopolymer ($M_n^{\text{th}} = 8340$, $M_n^{\text{SEC}} = 1070$, $M_w/M_n = 1.26$).

Figure SF9. 400 MHz ¹H NMR spectrum in CHCl₃ of PMMA-*b*-PBMA-Br copolymer ($M_n^{\text{th}} = 27900, M_n^{\text{SEC}} = 35200, M_w/M_n = 1.06$).

Figure SF10. 400 MHz ¹H NMR spectrum in CHCl₃ of PEG-*b*-PDPA-Br block copolymer ($M_n^{\text{th}} = 20100$, $M_n^{\text{SEC}} = 20900$, $M_w/M_n = 1.24$).

Figure SF11. Kinetic plots of (a) $\ln([M]_0/[M])$ vs. time and (b) M_n^{SEC} and M_w/M_n vs. monomer conversion for SARA ATRP of MMA at 30 °C in DMSO in the presence and absence of light. Conditions: $[MMA]_0/[DMSO] = 2/1 \text{ (v/v)}; [MMA]_0/[EBPA]_0/[CuBr_2]_0/[TMG]_0 = 100/1/0.1/2; Cu^0 \text{ wire: } l = 5.0 \text{ cm}, d = 1 \text{ mm}.$