Supplementary information

Poly(2-amino-2-oxazoline)s: A New Class of Thermoresponsive Polymers.

Ondrej Sedlacek,* Debaditya Bera, Richard Hoogenboom*

Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium

E-mail: richard.hoogenboom@ugent.be

Figure S1. ¹H NMR spectrum of 2-ethoxy-2-oxazoline in CD₂Cl₂.

Figure S2. ¹H (A), ¹³C (B), ¹H-¹H COSY (C) and ¹H-¹³C HSQC (D) NMR spectra of 2diethylamino-2-oxazoline in CDCl₃. All shifts are given in ppm.

Figure S3. CROP of DEAOx in acetonitrile at 140°C initiated with MeOTs, $[M]_0/[I]_0 = 50$, $[M]_0 = 4$ M: Monomer consumption kinetics (A), SEC traces of crude polymerization mixture after different reaction times (B).

Figure S4. CROP of DEAOx in acetonitrile at 140°C initiated with phenyloxazolinium tetrafluoroborate, $[M]_0/[I]_0 = 30$, $[M]_0 = 4$ M: Monomer consumption kinetics (A), SEC traces of crude polymerization mixture after different reaction times (B).

Figure S5. ¹H NMR spectra of PDEAOx synthesized by CROP of DEAOx (A), respectively by PEI acylation (B) in CD₃OD. Chemical shifts are given in ppm.

Scheme S1. Proposed mechanism of DEAOx polymerization showing the chain transfer process.

Figure S6. ¹³C NMR spectra of PEI (A), PDMAOx (B), PEAOx and PDEAOx in CD₃OD, PMoOx in D₂O and PDiPAOx in CDCl₃. Insets represent expanded area around the methanol peak. All chemical shifts are given in ppm.

Figure S7. COSY NMR spectra of PDMAOx (A), PEAOx (B) PDEAOx (C), PDiPAOx (D) and PMoOx (E). All chemical shifts are given in ppm.

Figure S8. TGA curves of synthesized polymers.