Supporting Information

Synthesis and Self-Assembly of Photoacid-Containing Block Copolymers based on 1-Naphthol

Felix Wendler,^{a,b} Jessica C. Tom^{a,b} and Felix H. Schacher^{a,b}*

^{*a*} Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Humboldtstrasse 10, 07743 Jena, Germany

E-Mail: felix.schacher@uni-jena.de

^b Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany

				т		$M_{n,\text{SEC}}^{a}$		Overall
Entry	Monomer	Solvent	CTA	$(^{\circ}C)$	Ι	$(ka mol^{-1})$	D^{a}	Conversion ^b
				(\mathbf{C})		(kg mor ⁻)		(%)
1	tNMAm	1,4-dioxane	CPADB	70	AIBN	9	1.24	25
2				90		9.5	1.20	27
3					ACHN	6	1.10	4
4			CEPTA			5	1.14	14
5		bulk	CPADB	70	AIBN	11	1.61	44
6		toluene				5	1.09	16
7	tVN	1,4-dioxane	CPADB	70	AIBN	5.5	1.23	24
8		bulk		90		10	1.33	46
9					ACHN	7	1.28	41
10		1,4-dioxane	CEPTA	70	AIBN	5.5	1.31	24
11		bulk				8	1.22	46
12		Toluene	ULADD			2	1.02	6

^a SEC (DMAc/LiCl) (PMMA calibration), ^b ¹H-NMR (300 MHz, CDCl₃).

Figure S1: Monomer conversion vs time plot for (A) tNMA, (B) tNMAm, (C) tVN, and (D) tNOeMA, copolymerized with MMA and DMAEMA with a [monomer]:[CTA] = 125:1. TBS was used as an internal standard (IS) for (B) and (C).

Figure S2: Semilogarithmic plot for *t*NMA, *t*NMAm, *t*VN, and *t*NOeMA, copolymerized with MMA and DMAEMA with a [monomer]:[CTA] = 125:1.

Figure S3: Monomer conversion vs time plot for tNMA with a [monomer]:[CTA] ratio of (A) 200:1 or (B) 500:1; and tNOeMA with a [monomer]:[CTA] ratio of (C) 200:1 or (D) 500:1, copolymerized with MMA and DMAEMA.

Figure S4: ¹H-NMR spectra of P(M_{0.6}-*co*-D_{0.27}-*co*-*t*NMAm_{0.13}), P(M_{0.54}-*co*-D_{0.24}-*co*-*t*NOeMA_{0.22}) and P(M_{0.48}*co*-D_{0.18}-*co*-*t*VN_{0.34}).

Figure S5: ¹H-NMR spectrum of P(M_{0.54}-co-D_{0.21}-co-tNMA_{0.25}).

Figure S6: ¹H-NMR spectrum of P(O₂₀).

Figure S7: (A) Overall monomer conversion vs time plot for MEO₉MA homopolymerization with a [monomer]:[CTA] = 40:1; and the corresponding (B) SEC traces after different reaction times.

Figure S8: ¹H-NMR spectra of $P(M_{0.35}-co-D_{0.09}-co-tNMA_{0.11})-b-P(O)_{0.45}$ and $P(M_{0.33}-co-D_{0.18}-co-tNMA_{0.23})-b-P(O_{0.26})$.

Figure S9: Monomer conversion vs time plot for copolymerization of various monomers (DMAEMA, tVN, and tNMAm) with MMA (reaction conditions: AIBN, 1,4-dioxane 70 °C).

Figure S10: ¹H-NMR spectra of $P(O_{0.24})$ -*b*- $P(M_{0.29}$ -*co*- $D_{0.28}$ -*co*- $tNMAm_{0.19}$), $P(M_{40}$ -*co*- D_9 -*co*- $tNOeMA_{13}$)-*b*- $P(O_{32})$ and $P(O_{0.25})$ -*b*- $P(M_{0.22}$ -*co*- $D_{0.27}$ -*co*- $tVN_{0.26}$).

Figure S11: ¹H-NMR spectra of $P(O_{0.24})$ -*b*- $P(M_{0.29}$ -*co*- $D_{0.28}$ -*co*- $NMAm_{0.19}$), $P(M_{40}$ -*co*- D_{9} -*co*- $NOeMA_{13}$)-*b*- $P(O_{32})$ and $P(O_{0.25})$ -*b*- $P(M_{0.22}$ -*co*- $D_{0.27}$ -*co*- $VN_{0.26}$).

Figure S12: ¹H-NMR spectra of P(M_{0.35}-*co*-D_{0.09}-*co*-NMA_{0.11})-*b*-P(O_{0.45}) and P(M_{0.33}-*co*-D_{0.18}-*co*-NMA_{0.23})-*b*-P(O_{0.26}).

Figure S13: Intensity-weighted hydrodynamic radius of block tetrapolymers with varying hydrophilic contents: $P(M_{0.35}$ -co- $D_{0.09}$ -co- $NMA_{0.11}$)-b- $P(O_{0.45})$, (B) $P(M_{0.33}$ -co- $D_{0.18}$ -co- $NMA_{0.23}$)-b- $P(O_{0.26})$, and (C) $P(M_{0.31}$ -co- $NMA_{0.31}$)-b- $P(O_{0.18})$ corresponding to 45, 26, and 18 %, respectively.

Figure S14: Fluorescence emission spectra of NR-loaded micelles of $P[(M_x-co-D_y-co-"N"_z)_n-b-(O)_m]$ upon 365 nm light irradiation and corresponding NR release where "N" is NMAm (A)–(D), NOeMA (E)–(H), and VN (I)–(L).