Supporting Information:

A Bio-orthogonal functionalization strategy for site-specific coupling of antibodies on liposome surfaces after selfassembly

Meiyu Gai^{a,1}, Johanna Simon^{a,b,1}, Ingo Lieberwirth^a, Volker Mailänder^{b,a}, Svenja Morsbach^{a,*} and Katharina Landfester^a

^a Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

^b Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany

¹ authors contributed equally

Corresponding author E-mail: morsbachs@mpip-mainz.mpg.de

Contents:

- Images of liposome film formation and rehydration
- Images of washing procedure
- DLS measurements of liposomes
- Fluorescamine assay reaction scheme
- Zeta potential measurements
- Functionalization of azide-modified antibodies with a fluorescent dye
- Concentration and absolute amount of antibodies per liposome

Additional Figures

Figure S1: Images of liposome synthesis: A) Egg PC:DOPE:Chol = 1:1:1 lipid dry film after the process of rotary evaporation in a round bottom flask; B) same lipid dry film with an addition of 0.1 mol% DiI; C) rehydration and stirring overnight (stirring speed: 700 rpm) in PBS buffer.

Figure S2: Purification of DBCO functionalized liposomes by centrifugation at 20000 g, 1 h and 4 °C and subsequent redispersion in PBS buffer for a total of 3 times.

Figure S3: Autocorrelation function $g_2(t)$ of non-functionalized liposomes in PBS buffer for an exemplary scattering angle of 90° together with the distribution of relaxation times $H(ln\tau)$ obtained from the CONTIN algorithm.

Figure S4: DLS measurements of liposomes in PBS buffer or water depending on different membrane pore sizes used for extrusion (dotted lines are a guide to the eye). The membrane pore size of 200 nm (highlighted with a box) was chosen for further synthesis of all liposome samples presented in the manuscript.

Figure S5: Zeta potential analysis of liposomes in 0.1 M KCl solution measured in triplicate.

Figure S6: Reaction scheme for the fluorescamine assay (FA assay). The fluorescamine can react with primary amine groups (-NH₂) of liposomes and the fluorescent product can be excited and detected by plate reader (λ_{Ex} = 410 nm, λ_{Em} = 470 nm). Hexylamine which contains primary amine groups can be used as a reference for making the standard calibration curve.

Figure S7. Functionalization of azide-modified antibodies with a fluorescent dye. A) Azidemodified anti-mouse CD11c antibodies (0.5 mg mL⁻¹, 15 μ L) were incubated with DIBOconjugated R-phycoerythrin (DIBO R-PE, 11.25 μ L) overnight in the dark at room temperature. B) and C) Flow cytometry analysis of DC2.4 cells, which were incubated with anti-mouse CD11-PE antibodies (0.34 mg mL⁻¹, 1 μ L). For blocking: Cells were pre-treated with free unlabeled antimouse CD11c antibody (2 mg mL⁻¹, 5 μ L) and afterwards anti-mouse CD11-PE antibodies were added. The median fluorescent intensity (MFI) from two independent measurements is shown.

Liposome concentration	1*10 ¹³ liposomes/mL
Solid content	0.3 wt% (3 mg/mL)
M _w Antibody	150,000 g/mol

Table S1.	Concentration	and absolute	amount of antibodic	es per liposome
-----------	---------------	--------------	---------------------	-----------------

Coupling		
500 μg Liposomes-DBCO	17.5 μg CD11c-Azide	
1.67*10 ¹² Liposomes-DBCO	7*10 ¹³ CD11c-Azide	
~ 42 Antibodies per Liposome		