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Materials and Methods

All chemicals and solvents were purchased from Sigma-Aldrich or Fisher Scientific and

used as received, unless stated otherwise. Tetrakistriphenylphosphine palladium(0) (Pd(PPh3)4)

was purchased from Strem Chemicals and used without extra purification. Toluene,

tetrahydrofuran (THF), and N,N-dimethylformamide (DMF) were purified using an Innovative

Technologies MD-5 Solvent Purification System and degassed prior to use. N-Bromosuccinimide

(NBS) was recrystallized from hot water prior to use. All synthesized materials were purified via

column chromatography using 60 Å silica gel (40-63 µm, Sorbent Technologies).

13C and 1H, gradient-enhanced heteronuclear multiple bond correlation (gHMBC) and

gradient-enhanced heteronuclear single quantum coherence (gHSQC) NMR spectra of synthesized

molecules or polymers were acquired using a Varian VNMRS 500 MHz NMR or a Varian Mercury

Vx 300 MHz at room temperature using 15–20 mg mL−1 solutions in deuterated chloroform

(CDCl3). Chemical shifts are reported in units of δ (ppm) and referenced to the residual solvent

peak. Mass spectrometry measurements used a JEOL AccuTOF DART mass spectrometer with

toluene solutions at ~1 mg/mL. The average molecular weight and dispersity of synthesized

polymers were determined by gel permeation chromatography (GPC) using universal calibration

analysis based on polystyrene (PS) standards (Agilent, EasiVial PS-M, MW 162, 370, 945, 1,230,

3,090, 6,320, 13,000, 27,800, 45,100, 107,000, 217,000, 364,000 g/mol). For this, an Agilent 1260

Infinity II isocratic pump equipped with two Agilent (7.5 × 300 mm) mixed-D type columns in

sequence was used. This instrument features a Wyatt Dawn® Helios® 8 Multi-Angle Light

Scattering Detector, ViscoStar® III viscometer, and an Optilab® T-rEX™ RI detector. Samples

were dissolved in THF at nominal concentrations of 5 mg/mL and passed through a 0.2 µm PTFE

filter prior to analysis. The flow rate of the THF mobile phase was set at 1 mL/min. Thermal
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stability of the polymers in a nitrogen (N2) atmosphere was determined using a TA Instruments

Q50 Thermogravimetric Analyzer (TGA). The protocol used consisted of ramping from room

temperature to 800 °C using a heating rate of 10 °C/min with the analytes in a platinum pan.

Thermal transitions were measured by differential scanning calorimetry (DSC) using a TA

Instruments Q-2000 DSC. Samples of nominally ~5 mg were sealed standard aluminum pans and

subjected to a heat–cool–heat cycle from −40 °C to 270 °C at a heating rate of 10 °C/min and a

cooling rate of 10 °C/min under an N2 atmosphere. Optical absorbance spectra were acquired using

a Thermo Scientific Evolution 600 UV-Vis spectrophotometer by scanning from 225–650 nm. The

polymer solution concentration was fixed at 0.01 mg/mL. Fluorescence emission spectra were

acquired from polymer solutions (at 0.01 mg/mL in CHCl3 and either 0.01 mg/mL or 0.02 mg/mL

in THF) using a Cary Eclipse fluorescence spectrophotometer. An excitation wavelength of 360

nm was used, and emission measured by scanning from 370-700 nm.

Synthesis of Small Molecules and Monomers

Synthesis of 3-(6-bromohexyl)thiophene:

3-(6-Bromohexyl)thiophene was synthesized following procedures described by McNeil

et al.1 The product was extracted using 100 mL of diethyl ether and the organic phase was dried

over MgSO4, filtered, and then concentrated via rotary evaporation. Excess 1,6-dibromohexane

was removed by vacuum distillation at 65 oC (at 30 mTorr) and the retained product was purified
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by silica gel column chromatography using hexane. The product was recovered as a colorless oil

with a 70% yield. 1H-NMR (300 MHz, CDCl3), δ (ppm): 7.24 (dd, 1H, J = 4.9, 3.0 Hz), 6.94 –

6.90 (m, 2H), 3.41 (t, 2H, J = 6.7 Hz), 2.64 (t, 2H, J = 7.5 Hz), 1.90 – 1.83 (m, 2H) 1.68 – 1.61

(m, 2H), 1.51 – 1.44 (m, 2H) 1.40 – 1.33 (m, 2H). 13C-NMR (300 MHz, CDCl3) δ (ppm): 142.9,

128.2, 125.2, 119.9, 33.9, 32.7, 30.3, 30.1, 28.4, 28.0. AccuTOF DART: calc’d [M+H+]: 247.0156,

found [M+H+] 247.0155.

Synthesis of 2,5-dibromo-3-(6-bromohexyl)thiophene:

An oven-dried 3-neck round bottom flask was cooled to room temperature under vacuum.

To ensure an inert environment, the flask was evacuated and then refilled 3 with Ar. A solvent

mixture consisting of 25 mL of dry and degassed THF and 25 mL of glacial acetic acid (AcOH)

was added via syringe. 3-(6-bromohexyl) thiophene (0.985 g, 4 mmol, 1 equiv.) was added to the

THF/AcOH mixture and stirred for 30 min at room temperature. Under positive argon pressure,

1.495 g of freshly recrystallized NBS (8.4 mmol, 2.1 equiv.) was added in one portion to the

mixture and the flask was covered from light. The resulting mixture was stirred for 3 h at room

temperature. After this time, the reaction was quenched by adding a saturated solution of sodium

bicarbonate. The product was extracted with 100 mL of diethyl ether and the aqueous phase was

discarded. The organic phase was washed with brine, isolated, then dried over MgSO4. The MgSO4
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was removed by filtration, and the product was concentrated via rotary evaporation. The product

was then purified via silica gel column chromatography using hexane as the mobile phase. The

product was subsequently was collected as a colorless oil with a yield of 75%. 1H-NMR (300 MHz,

CDCl3), δ (ppm): 6.77 (s, 1H), 3.40 (t, 2H, J = 6.8 Hz), 2.52 (t, 2H, J = 7.6 Hz), 1.91 – 1.81 (m,

2H) 1.62 – 1.52 (m, 2H), 1.50 – 1.40 (m, 2H) 1.40 – 1.30 (m, 2H). 13C-NMR (300 MHz, CDCl3)

δ (ppm): 142.6, 130.9, 110.5, 108.1, 33.8, 32.6, 29.34, 29.29, 28.2, 27.9. AccuTOF DART: calc’d

[M+H+]: 404.8346, found: 404.8312.

Synthesis of adenine-functionalized dibromothiophene monomer, (9-(6-(2,5-dibromothiophen-3-

yl)hexyl)-9H-purine-6-amine), M1:

50 mL of dry and degassed DMF was added to a dry 100 mL round bottom flask under

positive Ar pressure. Then, 821 mg (2.03 mmol, 1 equiv.) of 2,5-dibromo-3-(6-

bromohexyl)thiophene, 547 mg (4.05 mmol, 2 equiv.) of adenine, and 839 mg (6.08 mmol, 3

equiv.) of potassium carbonate (K2CO3) were added to the mixture under a stream of Ar. The

mixture was stirred at room temperature for 24 h. After this time, the solvent was removed under

high vacuum at 50 °C. Then, the product was extracted using 100 mL of CH2Cl2 (DCM) and

washed with water and a brine solution. Silica gel column chromatography was used to isolate the

N-9 the product using 5 vol% MeOH in DCM as the mobile phase. The N-9 alkylated compound
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was collected as the major product as a white solid at 55% yield. 1H-NMR (300 MHz, CDCl3), δ

(ppm): 8.35 (s, 1H, adenine-C2-H), 7.77 (s, 1H, adenine-C8-H), 6.72 (s, 1H, thiophene-C4-H),

6.13 (s, 2H, adenine-NH2) 4.17 (t, 2H, J = 7.2 Hz, adenine-N9-CH2), 2.46 (t, 2H, J = 7.5 Hz,

thiophene-C3-CH2), 1.96 – 1.81 (m, 2H) 1.58 – 1.44 (m, 2H), 1.40 – 1.28 (m, 4H). 13C-NMR (300

MHz, CDCl3) δ (ppm): 155.6 (adenine-C6), 152.9 (adenine-C2), 150.1 (adenine-C4), 142.5

(thiophene-C3), 140.3 (adenine-C8), 130.8 (thiopehen-C4), 119.7 (adenine-C5), 110.5 (thiophene-

C5), 108.1 (thiophene-C2), 43.9(adenine-N9-CH2), 30.0, 29.3, 29.2, 28.4, 26.4. AccuTOF DART:

calc’d [M+H+]: 459.9629, found: 459.9484.

Synthesis of Boc-protected adenine-functionalized monomer, M2:

50 mL of dry and degassed THF was added to a dry 100 mL round bottom flask under

positive argon pressure. 485.3 mg (1.06 mmol, 1 equiv.) of (9-(6-(2,5-dibromothiophen-3-

yl)hexyl)-9H-purine-6-amine) was added to the flask. Then, 38 mg (0.311 mmol, 0.3 equiv.) of 4-

dimethylaminopyridine (DMAP) was added to the solution followed by 694 mg of di-tert-butyl

dicarbonate (Boc2O, 3.18 mmol, 3 equiv.). (All were added under positive Ar pressure.) The

reaction flask was equipped with a mineral oil bubbler to allow carbon dioxide (CO2) that is

produced to be released, and the mixture was stirred for 24 h. After this time, the solvent was
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removed by rotary evaporation. Silica gel column chromatography was used to recover the desired

product, using 3 vol% MeOH in DCM as the mobile phase. The bis-N-Boc protected product was

collected as a pale brownish oil in 95% yield.1H-NMR (300 MHz, CDCl3), δ (ppm): 8.77 (s, 1H,

adenine-C2-H), 8.00 (s, 1H, adenine-C8-H), 6.66 (s, 1H, thiophene-C4-H), 4.19 (t, 2H, J = 7.2 Hz,

adenine-N9-CH2), 2.39 (t, 2H, J = 7.5 Hz, thiophene-C3-CH2), 1.92 – 1.79 (m, 2H) 1.50 – 1.40

(m, 2H), 1.36 (s, 18H, CH3), 1.31 – 1.22 (m, 4H). 13C-NMR (300 MHz, CDCl3) δ (ppm): 153.4

(adenine-C4), 151.8 (adenine-C2), 150.4 (Boc-carbonyl), 150.1 (adenine-C6), 144.7 (adenine-C8),

142.4 (thiophene-C3), 130.8 (thiophene-C4), 128.7 (adenine-C5), 110.4 (thiophene-C5), 108.0

(thiophene-C2), 83.5 (Boc-tertiary carbon), 44.1 (adenine-N9-CH2), 29.7, 29.2, 29.1, 28.3, 27.7

(Boc-methyls), 26.3. AccuTOF DART: calc’d [M+H+]: 660.0678, found: 660.05927.

Synthesis of terthiophene comonomer, 3,3',3'',4'-tetrahexyl-2,2':5',2''-terthiophene, tT4h:

30 mL of dry and degassed toluene was added to a dry 100 mL round bottom flask under

positive argon pressure. 615.4 mg (483 μL, 1.5 mmol, 1 equiv.) of 2,5-dibromo-3,4-

dihexylthiophene was added to the flask. Then, 1103 mg (1.291 mL, 3.75 mmol, 2.5 equiv.) of 3-

hexylthiophene-2-boronic acid pinacol ester was added to the solution. While the flask was under

positive argon pressure, 86.6 mg (0.075 mmol, 0.05 equiv.) of tetrakis(triphenylphosphine)

palladium (0) (Pd(PPh3)4) and then 30 mL of a 2M aqueous K2CO3 solution (20 equiv.) were added
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to the reaction mixture. After adding the K2CO3, a reflux condenser was attached to the flask and

the mixture was stirred for 24 h in an oil bath set to 100 oC. After this time, the reaction was

quenched by adding 50 mL of water. The reaction mixture was extracted with 100 mL of toluene

and the extract was washed with water and a brine solution. Toluene was removed under reduced

pressure and the product was purified via column chromatography using hexanes as the mobile

phase. The product was collected as a colorless oil in 80% yield. 1H-NMR (300 MHz, CDCl3), δ

(ppm): 7.28 (d, 2H, J = 5.3 Hz, thiophene-C5), 6.96 (d, 2H, J = 5.3 Hz, thiophene-C4), 2.58-2.44

(m, 8H, thiophene-CH2), 1.62-1.50 (m, 4H, thiophene-alkyl) 1.49-1.37 (m, 4H, thiophene-alkyl),

1.30-1.19 (m, 24H, thiophene-alkyl) 0.91-0.82 (m, 12H, thiophene-alkyl-CH3
13C-NMR (300

MHz, CDCl3) δ (ppm): 142.20 (thiophene-C2), 141.82 (thiophene-C2’), 129.37 (thiophene-C3’),

129.11 (thiophene-C3), 128.51 (thiophene-C4), 125.02 (thiophene-C5), 31.64, 31.49, 30.74,

30.66, 29.42, 29.13, 28.89, 28.00, 22.58, 22.53, 14.07, 14.04. AccuTOF DART: calc’d [M+H+]:

585.3622, found: 585.3527.

Synthesis of N-hexyl-adenine:

Adenine (540 mg, 4 mmol, 1 equiv.) was dissolved in 50 mL of dry DMF in a 150 mL

round bottom flask under an Ar atmosphere. Then, 1-bromohexane (556 μL, 660 mg, 6 mmol, 1.5

equiv.) and K2CO3 (1.104 g, 8 mmol, 2 equiv.) were added to the flask under a positive Ar

atmosphere. The mixture was stirred for 24 h and then the solvent was removed under vacuum.

The remaining solid was washed with water, dissolved in chloroform, and was subsequently
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purified via column chromatography with chloroform and MeOH (5 vol%) as the mobile phase.

The product was collected and the solvent removed via rotary evaporation, resulting in a white

powder (55% yield based on isolated product). 1H-NMR (500 MHz, CDCl3), δ (ppm):  8.30 (s,

1H), 7.74 (s, 1H), 6.65 (s, 2H), 4.12 (t, 2H, J = 7.2 Hz), 1.85 – 1.79 (m, 2H) 1.26 – 1.21 (m, 6H),

0.81 – 0.78 (m, 3H). 13C-NMR (500 MHz, CDCl3) δ (ppm): 155.9, 152.8, 149.9, 140.2, 119.5,

43.9, 31.1, 30.0, 26.2, 22.4, 13.9. AccuTOF DART: calc’d [M+H+]: 220.2998, found: 220.3104.

Synthesis of N-methyl-adenine:

50 mL of dry DMF was added to a 150 mL round bottom flask that contained adenine (75.1

mg, 0.56 mmol, 1 equiv.). Then, iodomethane (52.3 μL, 119.2 mg, 0.84 mmol, 1.5 equiv.) and

K2CO3 (138 mg, 1 mmol, 2 equiv.) were added to the flask under a positive Ar atmosphere. The

mixture was stirred for 24 h and then the solvent was removed under vacuum. The remaining solid

was washed with water and then purified using silica gel column chromatography with chloroform

and added MeOH (5 vol%) as mobile phase to recover the desired product. The product was

collected and the solvent removed via rotary evaporation, resulting in a white powder (67% yield

based on isolated product). 1H-NMR (300 MHz, (CD3)2SO), δ (ppm):  8.11 (s, 1H), 8.05 (s, 1H),

7.13 (S, 2H), 3.69 (s, 3H).  AccuTOF DART: calc’d [M+H+]: 149.0701, found: 149.0853.
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Synthesis of Boc-protected N-hexyl-adenine:

25 mL of dry and degassed THF was added to a dry 50 mL round bottom flask under

positive argon pressure. N-hexyl-adenine (438.5 mg, 2 mmol, 1 equiv.) was added to the flask and

then 76 mg (0.62 mmol, 0.3 equiv.) of DMAP was added to the solution. 1.091 g of di-tert-butyl

dicarbonate (Boc2O, 5 mmol, 2.5 equiv.) was added to the mixture under positive argon pressure.

Then, the mixture was stirred for 24 h while equipped with bubbler to allow CO2 gas evolved

during the reaction to escape. After this time, the solvent was removed by rotary evaporation. Silica

gel column chromatography was used to recover the product, and DCM with 5 vol% MeOH was

used as the mobile phase. The bis-N-Boc protected product, a pale brownish oil, was collected as

the major product in 85% yield. 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.84 (S, 1H), 8.04 (S, 1H),

4.26 (t, 2H, J = 7.2), 1.92 – 1.87 (m, 2H), 1.42 (S, 18H), 1.33 – 1.26 (m, 6H), 0.86 – 0.81 (m, 3H).

13C-NMR (300 MHz, CDCl3) δ (ppm): 153.4, 151.9, 150.5, 150.2, 144.7, 128.8, 83.6, 44.2, 31.1,

29.8, 27.8, 26.3, 22.4, 13.9. AccuTOF DART: calc’d [M+H+]: 420.5338, found: 420.5374.
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NMR Spectra of Small Molecules and Monomers

Figure S1. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of 3-(6-bromohexyl)thiophene.

Figure S2. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of 3-(6-bromohexyl)thiophene.
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Figure S3. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of 2,5-dibromo-3-(6-bromohexyl)

thiophene.

Figure S4. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of 2,5-dibromo-3-(6-bromohexyl)

thiophene.
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Figure S5. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of 9-(6-(2,5-dibromothiophen-3-
yl)hexyl)-9H-purine-6-amine) (M1).

Figure S6. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of 9-(6-(2,5-dibromothiophen-3-
yl)hexyl)-9H-purine-6-amine) (M1).
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Figure S7. Important multiple bond correlations from 2D gHMBC NMR spectra (500 MHz, 25
°C, CDCl3) of 9-(6-(2,5-dibromothiophen-3-yl)hexyl)-9H-purine-6-amine) (M1), which shows
corresponding chemical shifts for C-2 and C-8 protons of unprotected adenine and also confirms
N-9 attachment.

Figure S8. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of Boc-protected dibromo monomer
(M2).
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Figure S9. 13C NMR spectrum (500 MHz, 25 °C, CDCl3) of Boc-protected dibromo monomer
(M2).

Figure S10. Important multiple bond correlations from 2D gHMBC NMR spectra (500 MHz, 25
°C, CDCl3) of Boc-protected dibromo monomer (M2), which shows corresponding chemical shifts
for C-2 and C-8 protons of Boc protected adenine.
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Figure S11. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of 3,3',3'',4'-tetrahexyl-2,2':5',2''-
terthiophene (tT4h).

Figure S12. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of 3,3',3'',4'-tetrahexyl-2,2':5',2''-
terthiophene (tT4h).
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Figure S13. 2D gHSQC NMR spectra (500 MHz, 25 °C, CDCl3) of 3,3',3'',4'-tetrahexyl-2,2':5',2''-
terthiophene (tT4h) confirms the structure of tT4h monomer.

Figure S14. 2D gHMBC NMR spectra (500 MHz, 25 °C, CDCl3) of 3,3',3'',4'-tetrahexyl-2,2':5',2''-
terthiophene (tT4h) confirms the structure of tT4h monomer.
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Figure S15. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of N-hexyl-adenine.

Figure S16. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of N-hexyl-adenine.
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Figure S17. 1H NMR spectrum (300 MHz, 25 °C, (CD3)2SO) of N-methyl-adenine.

Figure S18. 1H NMR spectrum (300 MHz, 25 °C, CDCl3) of Boc-protected N-hexyl-adenine.
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Figure S19. 13C NMR spectrum (300 MHz, 25 °C, CDCl3) of Boc-protected N-hexyl-adenine.

Optimization of Conditions for DArP

DArP Test Reaction

Typical test conditions for direct arylation polymerization (DArP) of P3HT following

procedures suggested by Thompson et al.2 are shown in Scheme S1. 15 mL of dry and degassed

N,N-dimethylacetamide (DMAc) was transferred via cannula into a dry 50 mL round bottom flask.

Then, 2,5-dibromo-3-hexylthiophene (326 mg, 1 mmol) and 3-hexylthiophene (168 mg, 1 mmol)

were added to the flask via syringe. Neodecanoic acid (57 μL, 51 mg, 0.3 mmol), K2CO3 (276 mg,

2 mmol) and palladium catalyst (Pd(OAc)2, 13.4 mg, 0.06 mmol) were added to the mixture under

positive argon pressure. Then, the mixture was heated in an oil bath set to 100 oC and stirred for

24 h. At the end of this time, the reaction mixture was precipitated into cold methanol. The

precipitate was transferred to a cellulose Soxhlet thimble and subsequently washed with methanol

and acetone. The poly(3-hexylthiophene) was extracted from the thimble using chloroform and



21

then the solution was concentrated via rotary evaporation to obtain the product. This resulting

polymer had a number-average molecular weight, Mn, = 35.0 kg/mol and dispersity, Đ = 2.10 at

68% yield. Figure S20 presents the NMR spectrum of the resulting P3HT.

Scheme S1. Optimized DArP conditions used to synthesize poly(3-hexylthiophene) as a test
reaction.

Figure S20. 1H NMR spectrum of P3HT synthesized via optimized DArP conditions in the
absence of adenine.
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DArP in the Presence of Adenine Functionality

Direct arylation polymerizations of the adenine containing dibromo monomer (M1) and 3-

hexylthiophene using the optimized reaction conditions were unsuccessful (Scheme S2). The

reaction was performed in DMAc at 100 °C with 6 mol% palladium (II) acetate (Pd(OAc)2) as the

catalyst, 3 equiv. of potassium carbonate (K2CO3) as the base, and 0.3 equiv. of neodecanoic acid

as the proton shuttle. The possible effects of adenine functionality on direct arylation

polymerization are discussed in the Article.

Scheme S2: Attempts to use direct arylation polymerization to copolymerize dibromo adenine-
containing monomer, M1, and 3-hexylthiophene were unsuccessful.

To test whether adenine interferes with the catalyst, a catalytic amount of N-alkylated

adenine (0.04 equiv. of N-hexyl-adenine) was added to a DArP of 2,5-dibromo-3-hexylthiophene

and 3-hexylthiophene, as shown in Scheme S3. Unlike the test reaction performed using optimized

conditions described earlier, no P3HT was produced in the presence of the added adenine. This

confirms that adenine interacts with and deactivates the palladium catalyst. In the following

subsection, we describe a variety of attempts to conduct DArP in the presence of adenine

functionality, changing the catalyst, addition of ligand, and auxiliary catalyst as a way to alter the

interaction of adenine and Pd catalyst and enable DArP.
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Scheme S3. Attempted DArP reaction for synthesis of P3HT in the presence of N-hexyl-adenine.

Screening DArP Conditions (with N-hexyl-adenine as an Additive)

Scheme S4. General scheme for DArP in presence of N-hexyl-adenine.

DArP of 2-bromo-3-hexylthiophene in the presence of N-alkylated adenine (“adenine

functionality”) under a variety of conditions was tested. (See Scheme S4 and Table S1.) Many of

the conditions tested as part of the screening study were based on adaptations of polymerization

conditions reported in the literature. Daugulis et al. suggested that the addition of bulky, electron-

rich phosphine ligands, such as di(1-adamantyl)-n-butylphosphine, can stabilize the catalyst for

direct arylation of nitrogen containing heteroaromatics.3 Heterogeneous palladium catalysts like

Pd/C and Pd(OH)2/C also may add functional tolerance to direct arylation, as reported by Alami

et al.4 Another possible method for maintaining the activity of Pd catalyst is to add an excess of a

different metal ion that will sacrificially bond with adenine. This method has been used to temper

the reactivity of hydrogens on imidazole, thereby enabling direct arylation. Specifically, the
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addition of CuI resulted in selective arylation of imidazole at C-2, rather than at C-5.5, 6 These

reports informed out comprehensive screening study that was used to find suitable conditions for

DArP of 2-bromo-3-hexylthiophene in presence of adenine functionality, and Table S1

summarizes the results.

Table S1: Screening study used to identify appropriate conditions for synthesis of P3HT in
presence of N-hexyl-adenine by DArP.

Entry Catalyst Ligand Solvent,
Temperature

Base/Acida Other
additivesb

Results
and Mn

1 Pd(OAc)2 - DMAc,100°C
K2CO3/

Neodecanoic acid
- No polymer

2 Pd(OAc)2 - DMAc,100°C K2CO3/PivOH - No polymer

3 Pd(OAc)2
dppe,

12 mole%
DMAc,100°C K2CO3/PivOH - No polymer

4 Pd(OAc)2 - DMF, 100°C
K2CO3/

Neodecanoic acid
- No polymer

5 Pd(OAc)2
PAd2Bu
6 mol%

DMAc,100°C
K2CO3/

Neodecanoic acid
- No polymer

6 Pd(OAc)2 dppe DMAc,100°C K2CO3/ PivOH - No polymer
7 Pd(OAc)2 XantPhos DMAc,100°C K2CO3/ PivOH - No polymer

8
Herrmann's,

2 mole%
NSC 4 mol% THF, 100°C Cs2CO3 - No polymer

9
Herrmann's,

2 mole %
NSC 4 mol% Toluene, 100°C Cs2CO3 - No polymer

10
Herrmann's,

2 mole%
dppe DMAc,100°C

K2CO3/
Neodecanoic acid

- No polymer

11
Pd2(dba)3,
2 mole %

NSC, 6 mol% Toluene, 100°C Cs2CO3/PivOH - No polymer

12
Pd2(dba)3,
2 mole%

(n-Bu)PHBF4,
6 mol%

Toluene, 100°C Cs2CO3/PivOH - No polymer

13 Pd(PPh3)4 NSC, 4 mol% Toluene, 100°C Cs2CO3/PivOH - No polymer

14
Pd(OH)2/C - DMAc,100°C K2CO3/ PivOH - No polymer

15 Pd(OAc)2 - DMAc,100°C Cs2CO3/PivOH CuI No polymer

16 Pd(OAc)2

PAd2Bu
6 mol% DMAc,100°C K2CO3/ PivOH CuI

Polymer
15% yield

Mn ~ 2
kg/mol

a: PivOH = pivalic acid
b: molar ratio of CuI:N-hexyl-adenine= 3:1

Among these possibilities, only the addition of CuI and a bulky phosphine ligand (together)

allowed P3HT to be produced when N-hexyl-adenine was present. Applying the same reaction
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conditions – added CuI and bulky phosphine ligand – to DArP of monomer M1 did not afford any

polymer. This may be due to limited solubility of the polymer in the reaction solvent DMAc. In

total, the results of these screening studies suggest that binding of adenine to the Pd catalyst plays

significant role in deactivation of the catalyst or interference in the catalytic cycle.

Interaction of Pd ion with Adenine

Metal ions, including platinum ions, can bind to nucleobases, and these interactions have

been studied to explain the activity of platinum compounds as drugs or the effects of metal ions

on the activity of metalloenzymes.7-11 Adenine can bind with cations through its primary amine as

well as through nitrogen atoms in the fused ring heterocycle, forming various bidentate or

multidentate complexes. N-7 has greatest propensity for chelating Pt and Pd ions.9, 10 To gain

insight into complex formation of adenine with Pd ions, N-methyl-adenine was synthesized and

used. An equimolar mixture of Pd(OAc)2 (30.1 mg, 0.134 mmol) and N-methyl-adenine (20.3 mg,

0.134 mmol) was prepared in DMSO. Changes in chemical shifts of C-2 and C-8 are interpreted

as indicating formation of Pd2+/adenine complexes. At least five different complexes can be

observed from coordination of Pd2+ with adenine, as shown in Figure S21. This finding is in

general agreement with previous reports9, 10 and highlights the strong interaction between adenine

and Pd2+ ions.
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Figure S21. Aromatic region of (bottom) N-methyl-adenine and (top) an equimolar mixture of N-
methyl adenine and Pd2+ in DMSO-d6. A, B, C, D, E, and F refer to different Pd2+/adenine
complexes.

Amine-protected Adenine

Protecting the primary amine functionality of the adenine may weaken its interaction with

palladium ions, thereby enabling DArP in the presence of the protected adenine. To test this, tert-

butyloxycarbonyl (Boc) protecting groups were utilized. DArP of 2-bromo-3-hexylthiophene in

presence of bis-Boc protected N-hexyl-adenine (0.04 equiv.) was conducted using the same

optimized conditions proven for DArP of 2-bromo-3-hexylthiophene. Under these conditions (see

Scheme S5), the direct arylation polymerization was successful, resulting in a 45% yield of P3HT

having Mn = 5.90 kg/mol and Đ =1.68. Thus, we conclude that amine protection is necessary to

prevent interference due to complex formation between the adenine and the Pd catalyst. Figure

S22 shows the 1H NMR spectrum of the P3HT produced by DArP in the presence of Boc-protected
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adenine. Based on this result, a Boc-protected, adenine containing monomer (M2) was

synthesized.

Scheme S5. DArP conditions for successful polymerization in presence of Boc-protected N-hexyl-
adenine.

Figure S22. 1H NMR spectrum of P3HT produced by DArP of 2-bromo-3-hexylthiophene in the
presence of a catalytic amount of Boc protected N-hexyl-adenine.
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DArP Synthesis of TAd-Boc-T and TAd-Boc-tT4h

Two alternating copolymers, TAd-Boc-T and TAd-Boc-tT4h, were synthesized in similar DArP

conditions, as shown in Scheme S6.

Scheme S6. Scheme for polymerization of Boc-protected monomers via DArP to produce a) TAd-

Boc-T and b) TAd-Boc-tT4h.

8 mL of dry and degassed DMAc was transferred via cannula to a dry 50 mL round bottom

flask. Then, amine-protected dibromo monomer, M2, (329 mg, 0.5 mmol, 1 equiv.) was added to

the flask. The other comonomer, either 3-hexylthiophene, T, (84mg, 0.5 mmol, 1 equiv.) or

3,3',3'',4'-tetrahexyl-2,2':5',2''-terthiophene, tT4h (292.5 mg, 0.5 mmol), was added to the solution,

which would yield either TAd-Boc-T or TAd-Boc-tT4h, respectively. Then, neodecanoic acid (29 μL,

26 mg, 0.15 mmol, 0.3 equiv.) and K2CO3 (138 mg, 1 mmol, 2 equiv.) were added to the mixture
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while it was maintained under a positive argon atmosphere. After the additions, the flask was

sealed with a septum and the mixture was heated to 100 oC and stirred for 24 h. At the end of this

time, the reaction mixture was precipitated into cold methanol. The precipitate was washed with

methanol and transferred to a cellulose thimble. The final product was extracted from the Soxhlet

thimble by dissolving the soluble components in chloroform. TAd-Boc-T and TAd-Boc-tT4h were

isolated in 56% and 72% yield, respectively. 1H NMR spectra and GPC traces of these fully

conjugated, alternating copolymers are shown in Figures S23 – S26.

Figure S23. GPC trace of TAd-Boc-T synthesized via DArP using the amine-protected dibromo
monomer (M2). Relative to PS standards, this copolymer has an Mn = 6.9 kg/mol and Đ = 1.37.
As described in the following section, the deprotected copolymer was insoluble.
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Figure S24. 1H NMR spectrum of TAd-Boc-T synthesized via DArP using the amine-protected
dibromo monomer (M2).

Figure S25. Overlay of GPC traces of TAd-Boc-tT4h (Mn =7.0 and Đ = 2.01, blue trace) and TAd-
tT4h (Mn = 7.0 kg/mol and Đ = 1.82, black trace). (These are the Boc-protected and deprotected
copolymers, respectively.)
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Figure S26. 1H NMR spectrum of TAd-Boc-tT4h synthesized via DArP using the amine-protected
dibromo monomer (M2).

General Procedure for Acid Catalyzed Deprotection of TAd-Boc-T or TAd-Boc-
tT4h
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Scheme S7. Acid catalyzed deprotection of a) TAd-Boc-T and b) TAd-Boc-tT4h.

Boc groups were removed by acid catalysis, as shown in Scheme S7. The Boc-protected

polymer (either TAd-Boc-T or TAd-Boc-tT4h) was added to a 100 mL dry round bottom flask. Then,

50 mL of a solution compared of trifluoroacetic acid (TFA) and dichloromethane (DCM) at a 1:1

volumetric ratio was added to the flask. The flask was connected to a bubbler to allow the gas

produced (CO2) to escape. The mixture was stirred for 24 h at room temperature. At the end of this

time, the volatiles were removed under reduced pressure and then the rest of the mixture was

precipitated into cold methanol. The precipitate was washed with methanol and acetone via

subsequent Soxhlet washes and then extracted from the cellulose Soxhlet thimble using

chloroform. The deprotected product of TAd-Boc-T was insoluble in various organic solvents and

further characterization was impossible due to this solubility issue. On the other hand, TAd-Boc-tT4h
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showed quantitative and complete deprotection and the resulting polymer, TAd-tT4h, was soluble

in most organic solvents, including chloroform, THF, and DCM. Figure S25 and Figure S28

present GPC trace and 1H NMR data of TAd-tT4h, with the GPC results comparing the protected

and deprotected polymers.

Figure S27. 1H NMR spectrum of TAd-tT4h after acid-catalyzed deprotection of the adenine
functionality.

Synthesis of T-tT4h (homologue of TAd-tT4h without adenine)

Scheme S8. Synthesis of non-adenine containing homologue polymer, T-tT4h via DArP.
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A homologue without adenine was synthesized using the same DArP conditions.

Specifically, 25 mL of dry and degassed DMAc was cannula transferred to a dry 50 mL round

bottom flask. Then, 2,5-dibromo-3-hexylthiophene (163 mg, 0.5 mmol, 1 equiv.) and 3,3',3'',4'-

tetrahexyl-2,2':5',2''-terthiophene (tT4h) (292.5 mg, 0.5 mmol, 1 equiv.) were added to the flask.

Neodecanoic acid (29 μL, 26 mg, 0.15 mmol, 0.3 equiv.) and K2CO3 (138 mg, 1 mmol, 2 equiv.)

were added to the mixture while it was purging under argon. The mixture was heated to 100 oC

and stirred for 24 h. Then, the reaction mixture was precipitated into cold methanol. The precipitate

was washed with methanol and acetone. The precipitate was transferred to a cellulose thimble and

then collected from the soluble material after Soxhlet extraction using chloroform. These reaction

conditions resulted in a copolymer having a Mn = 8.5 kg/mol and Đ = 1.64 at 71% yield. Figure

S28 and Figure S29 show the GPC trace and 1H NMR spectrum, respectively, of the resulting

polymer, T-tT4h.

Figure S28. GPC trace of T-tT4h synthesized using optimized DArP conditions. Relative to PS
standards, this copolymer has a Mn =8.5 kg/mol and Đ = 1.64.
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Figure S29. 1H NMR spectrum of T-tT4h synthesized using optimized DArP conditions.
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Thermal Properties of Alternating Copolymers

Figure S30. Mass loss measured by thermogravimetric analysis of a) T-tT4h and b) TAd-tT4h. Data
were acquired by ramping from 20 °C to 800 °C at a rate of 10 °C/min.

Figure S31. Results of differential scanning calorimetry measurements of a) T-tT4h (Tg ≈ − 18 °C)
and b) TAd-tT4h (Tg ≈ 52 °C). Experiments were performed using heating and cooling rates of 10
°C/min, with Tg’s determined from the second heating ramp.
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Optical Properties of Alternating Copolymers

Figure S32. UV-Vis spectra of the non-adenine containing copolymer, T-tT4h, at various
concentrations in chloroform (left) and the Beer-Lambert plot (right).

Figure S33. UV-Vis spectra of the adenine-containing copolymer, TAd-tT4h, at various
concentrations in chloroform (left) and the Beer-Lambert plot based on the absorbance mode
attributed to the polythiophene backbone (right).
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Figure S34. Integrated fluorescence intensity as a function of absorbance intensity maximum (of
the polythiophene backbone) used for measurements of quantum yield by the comparative method
(relative to Rhodamine 101).

Figure S35. Fluorescence quenching response of T-tT4h (at 0.01 mg/mL) upon addition of Cu2+.
No detectable change in fluorescence emission is observed for at 20 µM Cu2+. A 10% quenching
efficiency is observed for T-tT4h at 100 µM Cu2+, while TAd-tT4h shows a 54% quenching
efficiency at the same Cu2+ concentration.
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Figure S36. Fluorescence quenching response of TAd-tT4h. As indicated in the figure, a single
mechanism is present at low concentration, while the change in slope, nominally demarcated by
the dashed green line, suggests both static and dynamic quenching occurs at higher concentration.
The red line corresponds to a polynomial fit (R2 = 0.9986).

Figure S37. Fluorescence quenching response of TAd-tT4h in presence of different ions (0.01
mg/mL in THF and 400 μM metal ion).
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