Supporting Information

Propagation Rate Coefficient for Acrylic Acid Polymerization in Bulk and in Propionic Acid by PLP-SEC Method: Experiment and 3D Simulation

Eva Dušička,^a Anatoly. N. Nikitin,^{b*} Igor Lacík^{a*}

^aPolymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava,

Slovakia

^bInstitute on Laser and Information Technologies – Branch of Federal Scientific Research Center

"Crystallography and Photonics" of Russian Academy of Sciences, Svyatoozerskaya 1, 140700

Shatura, Moscow Region, Russia

Content:

Tables
Table S12
Table S26
Table S37
Table S47
Table S58
Figures
Figure S19
Figure S29
Figure S3
Figure S4
Schemes11
Scheme S111
Scheme S211
S1 Derivation of equation for the upper level of conversion11
Literature

Tables

Table S1. The propagation rate coefficient, k_p^{exp} , for polymerization of acrylic acid, AA, of different concentration, [AA],in propionic acid as a function of initiator concentration, [I], laser pulse energy, E_p , number of pulses, N_p , laser pulse repetition rate, f, and degree of conversion, γ . The molar masses M_1 and M_2 correspond to the first and second maxima determined from the first derivative curve of MMDs.

[AA],	# of	[I],	$E_{\rm p}$,	λ	<i>f</i> ,	γ,	M_1 ,	<i>M</i> ₂ ,	$k_{\rm p}^{\rm exp}$,
wt%	exp.	mmol·L ⁻¹	mJ	IVp	Hz	%	g·mol ^{−1}	g·mol ^{−1}	L·mol ⁻¹ ·s ⁻¹
	1	5	3	300	250	a)	10201	22544	19387
	2	5	3	300	250	a)	10112	22377	19220
	3	5	3	500	250	3.20	10216	22177	19682
	4	5	3	500	250	3.20	10130	22123	19518
10.1	5	5	3	100	500	0.50	4583	11552	17422
10.1	6	5	3	100	500	0.50	3921	10314	14903
	7	5	3	300	500	0.85	4537	10847	17276
	8	5	3	300	500	0.85	4422	11105	16839
	9	5	3	500	500	2.76	4452	11046	17117
	10	5	3	500	500	2.76	4570	11065	17572
	11	20	3	100	250	0.26	9478	23228	17763
	12	20	3	100	250	0.26	10598	25148	19861
	13	20	3	300	250	1.01	9136	22951	17187
	14	20	3	300	250	1.01	10231	25513	19247
	15	20	3	500	250	2.18	9448	22848	17878
10.3	16	20	3	500	250	2.18	10296	24618	19483
10.5	17	20	3	100	500	0.34	3991	11340	14967
	18	20	3	100	500	0.34	4472	11524	16770
	19	20	3	300	500	8.06	3933	10272	15342
	20	20	3	300	500	8.06	4420	11357	17238
	21	20	3	500	500	2.16	4026	10785	15237
	22	20	3	500	500	2.16	4476	11712	16937
	23	5	3	100	250	0.27	23516	49786	22613
19.9	24	5	3	100	250	0.27	23068	49526	22182

[AA],	# of	[I],	<i>E</i> _p ,	N	<i>f</i> ,	γ,	M_1 ,	<i>M</i> ₂ ,	$k_{\rm p}^{\rm exp}$,
wt%	exp.	mmol·L ⁻¹	mJ	¹ vp	Hz	%	g·mol ^{−1}	g·mol ^{−1}	L·mol ⁻¹ ·s ⁻¹
	25	5	3	300	250	2.00	24025	50202	23305
	26	5	3	300	250	2.00	24238	50057	23511
	27	5	3	500	250	2.73	24616	50930	23967
	28	5	3	500	250	2.73	24798	51153	24144
	29	5	3	50	500	0.08	9917	23255	19053
	30	5	3	50	500	0.08	9971	23886	19158
	31	5	3	100	500	a)	9833	22462	18898
	32	5	3	100	500	a)	9977	24010	19177
	33	5	3	300	500	0.40	10430	25403	20072
	34	5	3	300	500	0.40	10429	25383	20069
	35	5	3	500	500	2.47	10303	24347	20036
	36	5	3	500	500	2.47	10444	24303	20310
	37	20	3	50	250	0.14	22323	50436	21464
	38	20	3	50	250	0.14	21920	49921	21076
	39	20	3	100	250	0.37	22891	49754	22035
	40	20	3	100	250	0.37	22800	49486	21947
	41	20	3	300	250	1.05	23456	49985	22656
	42	20	3	300	250	1.05	23373	51079	22575
	43	20	3	500	250	2.00	23284	51469	22597
10.0	44	20	3	500	250	2.00	23222	51681	22537
17.7	45	20	3	50	500	a)	9577	22893	18417
	46	20	3	50	500	a)	9392	23002	18062
	47	20	3	100	500	0.11	9586	23339	18432
	48	20	3	100	500	0.11	9642	23176	18538
	49	20	3	300	500	0.41	10112	24152	19472
	50	20	3	300	500	0.41	10066	24139	19383
	51	20	3	500	500	1.64	10149	24280	19662
	52	20	3	500	500	1.64	10174	24216	19711
	53	5	3	50	250	a)	55952.7	112552	27153
	54	5	3	50	250	a)	55960.9	105425	27157
39.0	55	5	3	100	250	0.20	56911	111065	27630
	56	5	3	100	250	0.20	55733	113177	27058

[AA],	# of	[I],	<i>E</i> _p ,	N	<i>f</i> ,	γ,	M_1 ,	<i>M</i> ₂ ,	$k_{\rm p}^{\rm exp}$,
wt%	exp.	mmol·L ⁻¹	mJ	¹ v p	Hz	%	g·mol ^{−1}	g·mol ^{−1}	L·mol ⁻¹ ·s ⁻¹
	57	5	3	300	250	0.78	64094	168008	31209
	58	5	3	300	250	0.78	63144	160528	30746
	59	5	3	500	250	1.36	73553	181949	35919
	60	5	3	500	250	1.36	65419	174812	31946
	61	5	3	50	500	0.11	25259	56311	24516
	62	5	3	50	500	0.11	24505	54987	23784
	63	5	3	100	500	0.09	25181	55739	24438
	64	5	3	100	500	0.09	25226	55556	24481
	65	5	3	300	500	1.05	26435	65064	25779
	66	5	3	300	500	1.05	26910	61343	26242
	67	5	3	500	500	0.90	28161	62781	27441
	68	5	3	500	500	0.90	28440	63980	27713
	69	20	3	50	250	0.10	55693	110044	26975
	70	20	3	50	250	0.10	56180	109866	27211
	71	20	3	100	250	0.59	57575	115607	27956
	72	20	3	100	250	0.59	57623	116261	27980
	73	20	3	300	250	0.51	60432	134549	29331
	74	20	3	300	250	0.51	60619	135205	29422
	75	20	3	500	250	0.33	64105	169253	31086
39.1	76	20	3	500	250	0.33	64011	168616	31041
57.1	77	20	3	50	500	0.15	23425	54930	22698
	78	20	3	50	500	0.15	23081	59814	22365
	79	20	3	100	500	0.31	25677	56497	24901
	80	20	3	100	500	0.31	25999	57185	25213
	81	20	3	300	500	0.79	27250	62844	26490
	82	20	3	300	500	0.79	27804	61527	27029
	83	20	3	500	500	0.92	29190	64648	28394
	84	20	3	500	500	0.92	23081	59814	27802
	85	5	3	50	500	0.17	40504	85728	27886
	86	5	3	50	500	0.17	40326	84844	27763
54.5	87	5	3	100	500	0.24	40974	90152	28219
	88	5	3	100	500	0.24	41987	91638	28917

[AA],	# of	[I],	$E_{\rm p},$	N	<i>f</i> ,	γ,	M_1 ,	<i>M</i> ₂ ,	$k_{\rm p}^{\rm exp}$,
wt%	exp.	mmol·L ⁻¹	mJ	Ιν _p	Hz	%	g∙mol ⁻¹	g·mol ^{−1}	L·mol ⁻¹ ·s ⁻¹
	89	5	3	200	500	1.10	45706	97517	31614
	90	5	3	200	500	1.10	43754	95395	30264
	91	5	3	300	500	1.72	45937	96914	31874
	92	5	3	300	500	1.72	47075	96211	32663
	93	5	3	15	500	0.07	68549	130317	32755
	94	5	3	15	500	0.07	70146	128825	33518
	95			15	500	0.07	68391	122744	32680
	96	5	3	25	500	0.21	69663	123027	33312
77.6	97	5	3	25	500	0.21	70795	127644	33853
//.0	98	5	3	50	500	0.48	71945	127938	34449
	99	5	3	50	500	0.48	69984	120781	33510
	100	5	3	100	500	1.23	76033	130017	36544
	101	5	3	100	500	1.23	75336	128825	36209
	102	5	3	15	500	0.05	86298	164816	31618
	103	5	3	15	500	0.05	87498	161436	32058
	104	5	3	35	500	0.31	89331	168267	32771
	105	5	3	35	500	0.31	90365	169434	33151
	106	5	3	50	500	0.88	97949	175792	36035
	107	5	3	50	500	0.88	97949	177828	36035
100	108	5	4	15	500	0.08	84333	157036	30903
	109	5	4	15	500	0.08	85310	158855	31261
	110	5	4	25	500	0.36	89331	167109	32779
	111	5	4	25	500	0.36	89331	165196	32779
	112	5	4	50	500	0.17	88512	156315	32448
	113	5	4	50	500	0.17	88512	154170	32448

^{a)}data are not available

Parameters	AA	Ref.	PA	Ref.
Molar mass, $M_{\rm M}$ g·mol ⁻¹	72.06		74.08	
Heat of polymerization, $(-H_p)$ kJ·mol ⁻¹	77.5	[1]		
Specific heat, C _p J·kg ^{-1.°} C ⁻¹	$C_{p0}+C_{p1}T$ (<i>T</i> in °C)	[2]	$C_{p0}+C_{p1}T$ (T in °C)	[3]
$\frac{C_{\rm p0}}{\rm J\cdot kg^{-1.\circ}C^{-1}}$	1891.8		2280.1	
$\frac{C_{\rm p1}}{\rm J\cdot kg^{-1.\circ}C^{-2}}$	4.38		2.8555	
$\begin{array}{c} \text{Conductivity}, \lambda_{M} \\ \text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1} \end{array}$	$\begin{array}{c} \lambda_{\rm M0} - \lambda_{\rm M1} T \\ (T \text{ in K}) \end{array}$	[4]	$\begin{array}{c} \lambda_{\rm M0} - \lambda_{\rm M1} T \\ (T \text{ in K}) \end{array}$	[5]
$\lambda_{M0} = W \cdot m^{-1} \cdot K^{-1}$	0.2434		0.1827	
$\lambda_{ m M1} \ m W\cdot m^{-1} \ m K^{-2}$	2.875×10 ⁻⁴		1.205×10-4	
Density, $\mu_{\rm T}$ g·cm ⁻³	$\begin{array}{c} \mu_0 \text{-} \mu_1 T \\ (T \text{ in } ^\circ \text{C}) \end{array}$	[1]	$ \begin{array}{c} \mu_0 - \mu_1 T \\ (T \text{ in } ^\circ \text{C}) \end{array} $	[3]
μ_0 g·cm ⁻³	1.07088		1.0199	
$\begin{array}{c} \mu_1 \\ \mathbf{g} \cdot \mathbf{cm}^{-3} \cdot {}^{\circ} \mathbf{C}^{-1} \end{array}$	1.0989×10 ⁻³		1.1×10-3	
Activation energy for k_p , $E_a(k_p)$ kJ·mol ⁻¹	16.7	a)		
Pre-exponential factor for $k_{p,A}(k_{p})$ L·mol ⁻¹ ·s ⁻¹	2.54×10 ⁷ (100 wt% of AA) 2.27×10 ⁷ (54.5 wt% of AA)	this work		
Activation energy for $k_t, E_a(k_t)$ kJ·mol ⁻¹	15.5	[6]		
Pre-exponential factor for k_t , $A(k_t)$ L·mol ⁻¹ ·s ⁻¹	6.1×10 ¹⁰	this work		
Mode of termination (fraction of disproportionation)	0.05	[6]		

Table S2. Chemical and physical parameters used for 3D simulation of the PLP of acrylic acid (AA) in propionic acid (PA).

^{a)}unpublished experimental data

	Heat conductivity, W·m ⁻¹ ·K ⁻¹	Specific heat, C_p J·kg ⁻¹ ·°C ⁻¹	Ref.
Air	0.024 (25 °C)		[7]
Water	0.58 (25 °C)		[7]
Quartz	3.0 (25 °C)	728 (25 °C)	[8],[9]

Table S3. Physical parameters used for 3D simulation of the PLP of acrylic acid in the quartz cell surrounded by water and air.

Table S4. Chemical parameters used for PREDICI simulation of PLP of acrylic acid

Parameters	Values	Ref.
Activation energy for $k_{bb}, E_a(k_{bb})$ kJ·mol ⁻¹	41.74	[6]
Pre-exponential factor for k_{bb} , $A(k_{bb})$ s ⁻¹	4.25×10 ⁹	[6]
Activation energy for $k_p^{b}, E_a(k_p^{b})$ kJ·mol ⁻¹	35.940	[6]
Pre-exponential factor for k_p^{b} , $A(k_p^{b})$ L·mol ⁻¹ ·s ⁻¹	6.12×10 ⁷	[6]
Activation energy for k_t^{bb} , $E_a(k_t^{bb})$ kJ·mol ⁻¹	15.5	[6]
Pre-exponential factor for k_t^{bb} , $A(k_t^{bb})$ L·mol ⁻¹ ·s ⁻¹	6.1×10 ⁹	this work
Activation energy for k_t^{sb} , $E_a(k_t^{sb})$ kJ·mol ⁻¹	15.5	[6]
Pre-exponential factor for k_t^{sb} , $A(k_t^{sb})$ L·mol ⁻¹ ·s ⁻¹	3.36×10 ¹⁰	this work
Mode of termination, δ^{b} (fraction of disproportionation)	0.4	[6]
Mode of termination, δ^{bb} (fraction of disproportionation)	0.8	[6]
Activation energy for $k_{trM}, E_a(k_{trM})$ kJ·mol ⁻¹	16.7	[6]
Pre-exponential factor for k_{trM} , $A(k_{trM})$ L·mol ⁻¹ ·s ⁻¹	1.91×10 ³	[6]
Activation energy for k_{trM}^t , $E_a(k_{trM}^t)$ kJ·mol ⁻¹	35.94	[6]
Pre-exponential factor for k_{trM}^t , $A(k_{trM}^t)$ L·mol ⁻¹ ·s ⁻¹	4.53×10 ³	[6]

Doromotor	Monomer					
Palameter	AA	MA	BA	VAc		
Molar mass, <i>M</i> _M g⋅mol ⁻¹	72.06	86.09	128.17	86.09		
Heat of polymerization, $(-\Delta H_p)$ kJ·mol ⁻¹	77500 ^[1]	81790 ^[10]	77290 ^[13]	87900 ^[17]		
Specific heat, C_p^M J·kg ^{-1.} °C ⁻¹	2000 ^[2]	2000 ^[10]	1960 ^[14]	1770 ^[17]		
β, °C	538	475	308	577		
$k_{ m p,}$ L·mol ⁻¹ ·s ⁻¹	30140 ^[this work]	13130 ^[11]	16160 ^[15]	3600 ^[18]		
$k_{ m t,}$ L·mol ⁻¹ ·s ⁻¹	1.2×10 ^{8[this work]}	2.3×10 ^{8[12]}	$1.4 \times 10^{8[16]}$	5.2×10 ^{8[19],[20]}		
$k_{\rm p}/k_{\rm t}~(imes~10^{-4})$	2.51	0.57	1.15	0.069		

Table S5. The parameters influencing the increase of temperature during the PLP of acrylic acid (AA), methyl acrylate (MA) and butyl acrylate (BA) at 25 °C.

Figures

Figure S1.Configuration of a cuvette containing sample solution in a thermostatted temperature controlled system(a) and dimensions of monomer/photoinitiator sample of rectangular parallelepiped shape showing the assigned coordinate system (b).

Figure S2. The evolution of initiator (DMPA) concentration distributions along the centerline in the *y* direction during PLP of bulk AA at 25 °C at different monomer conversions (γ) and number of laser pulses (N_p). Simulation conditions are [I] = 5 mmol·L⁻¹, E_p = 3 mJ and f = 500 Hz. The physical and chemical parameters are taken from Tables S2 and S3.

Figure S3. MMDs (a) and their first derivative curves (b) obtained by the 3D and PREDICI simulations for AA bulk polymerization at 25 °C. Parameters for the simulations are taken from Tables S2, S3 and S4 of SI with f = 500 Hz, $N_p = 15$ and $[O_2] = 4.9 \times 10^{-5}$ mol·L⁻¹. For the 3D simulation, [I] = 5 mmol·L⁻¹, $E_p = 3$ mJ were used while for the PREDICI simulation [R_0] (the initial concentration of primary radicals) was set to 4×10^{-6} mol·L⁻¹.

Figure S4. The evolution of spatial temperature distributions along the centerline in the x(a) and y(b) directions during PLP of bulk AA after different N_p and γ . Initial temperature (that is supported by the temperature control system) for AA polymerization is 25°C. Simulation conditions are [I] = 5 mmol·L⁻¹, $E_p = 3$ mJ and f = 500 Hz. The physical and chemical parameters are taken from Tables S2 and S3.

Schemes

Scheme S1. Reactions of ideal model of radical polymerization used in 3D simulation

Scheme S2.Additional reactions included in PREDICI simulation

Backbiting	$R_i \xrightarrow{k_{bb}} R_i^b$
Reinitiation	$R_i^b + M \xrightarrow{k_p^b} R_{i+1} (+SCB)$
Chain transfer to monome	r
	$\mathbf{R}_{i} + \mathbf{M} \xrightarrow{k_{ttM}} \mathbf{P}_{i} + \mathbf{R}_{1}$
	$R_i^b + M \xrightarrow{k_{trM}^t} P_i + R_1$
Termination by disproport	ionation
	$R_i^b + R_j^b \xrightarrow{k_{td}^{bb}} P_i + P_j$
	$R_i + R_j^b \xrightarrow{k_{id}^{sb}} P_i + P_j$

Termination by combination

$$R_{i}^{b} + R_{j}^{b} \xrightarrow{k_{tc}^{bb}} P_{i+j}$$
$$R_{i} + R_{j}^{b} \xrightarrow{k_{tc}^{bb}} P_{i+j}$$

S1 Derivation of equation for the upper level of conversion

In the following derivation it is assumed that the solution of acrylic and propionic acid is ideal. Moreover, the contribution of low concentration of initiator on processes associated with heat transfer in the sample has been ignored. The sample of volume V contains monomer M and solvent S with masses m_M and m_S , respectively. During polymerization, part of monomer Δm_M ($\Delta m_M \ll m_M$) is converted into the polymer resulting in the release of heat Q. Considering the polymerization at adiabatic condition, the following expression could be written for the increase of temperature, ΔT , in V from the heat balance

$$\Delta T \left(m_{\rm M} C_{\rm p}^{\rm M} + m_{\rm S} C_{\rm p}^{\rm S} \right) = Q = \frac{\Delta m_{\rm M}}{M_{\rm M}} \left(-\Delta H_{\rm p} \right) \tag{S1}$$

where $(-\Delta H_p)$ and M_M are the heat of polymerization and the monomer molar mass, C_p^M and C_p^S are the specific heat capacity of monomer and solvent, respectively. When the mass fraction of monomer in solution is expressed as $\varphi = m_M/(m_M + m_S)$ and the degree of conversion is $\gamma = \Delta m_M/m_M$, following Equation (S2) for the ΔT could be written from Equation (S1):

$$\Delta T = \frac{\gamma(-\Delta H_{\rm p})}{M_{\rm M} C_{\rm p}^{\rm M} \left(1 + \frac{(1-\varphi)C_{\rm p}^{\rm S}}{\varphi C_{\rm p}^{\rm M}}\right)}$$
(S2)

Assuming that the upper level of conversion results in the same increase of temperature ΔT_u independently of φ , following relation can be written for the bulk polymerization ($\varphi = 1$) of monomer:

$$\Delta T_{\rm u} = \frac{\gamma_{\rm u} \left(-\Delta H_{\rm p} \right)}{M_{\rm M} C_{\rm p}^{\rm M}} \tag{S3}$$

Using Equation (S3) and considering the upper level of conversion by Equation (S2) for the solution polymerization connecting ΔT_u and γ_u^s , one derives Equation (2).

Literature

- 1. ACRYLIC ACID, <u>https://cameochemicals.noaa.gov/chris/ACR.pdf</u>.
- 2. 2-Propenoic acid,

https://webbook.nist.gov/cgi/cbook.cgi?ID=C79107&Units=SI&Mask=7.

- 3. PROPIONIC ACID, https://cameochemicals.noaa.gov/chris/PNA.pdf.
- Acrylic Acid, A Summary of Safety and Handling, 4th Edition 2013,
 <u>http://msdssearch.dow.com/PublishedLiteratureDOWCOM//dh_0933/0901b80380933166</u>
 <u>.pdf?filepath=a</u>.
- 5. E. R. Peterson, PhD, Oklahoma State University, 1985.
- 6. N. F. G. Wittenberg, PhD, Georg August Universität Göttingen, 2013.
- TYDEX, Quartz Glass for Optics, <u>http://www.tydexoptics.com/ru/materials/for_transmission_optics/fused_silica/</u>.
- Quartz glass material Q fused silica SiO2, http://www.elektrosteklo.ru/FS_visible_rus.htm.
- 9. J. Lalevée, X. Allonas and J. P. Fouassier, *Macromolecules*, 2006, **39**, 8216-8218.
- 10. Methyl Acrylate, <u>http://www2.basf.us/acrylicmonomers/pdfs/methacry.pdf</u>
- C. Barner-Kowollik, S. Beuermann, M. Buback, P. Castignolles, B. Charleux, M. L. Coote, R. A. Hutchinson, T. Junkers, I. Lacík, G. T. Russell, M. Stach and A. M. van Herk, *Polymer Chemistry*, 2014, 5, 204-212.
- M. Buback, A. Kuelpmann and C. Kurz, *Macromolecular Chemistry and Physics*, 2002, 203, 1065-1070.
- 13. N-butyl acrylate, <u>https://cameochemicals.noaa.gov/chris/BTC.pdf</u>.

14. Butyl acrylate,

https://www.arkema.com/export/shared/.content/media/downloads/productsdocumentations/acrylicmonomers/Butyl-Acrylate-Asia.pdf.

- J. M. Asua, S. Beuermann, M. Buback, P. Castignolles, B. Charleux, R. G. Gilbert, R. A. Hutchinson, J. R. Leiza, A. N. Nikitin, J.-P. Vairon and A. M. van Herk, *Macromolecular Chemistry and Physics*, 2004, 205, 2151-2160.
- A. N. Nikitin, R. A. Hutchinson, M. Buback and P. Hesse, *Macromolecules*, 2007, 40, 8631-8641.
- 17. Methyl methacrylate, http://cameochemicals.noaa.gov/chris/MMM.pdf.
- S. Beuermann, M. Buback, T. P. Davis, R. G. Gilbert, R. A. Hutchinson, O. F. Olaj, G. T. Russell, J. Schweer and A. M. van Herk, *Macromolecular Chemistry and Physics*, 1997, 198, 1545-1560.
- 19. M. Buback and C. Kowollik, *Macromolecules*, 1998, **31**, 3211-3215.
- 20. A. N. Nikitin, I. Lacík and R. A. Hutchinson, *Macromolecules*, 2016, 49, 9320-9335.