Supporting Information

A Sequential Native Chemical

Ligation-Thiol-Michael Addition

Strategy for Polymer-Polymer Ligation

Alexander Rajakanthan,^a James Town,^a Paul Wilson,^{*a} and Kristian Kempe^{*b}

^aDepartment of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom.

Email: p.wilson.1@warwick.ac.uk.

^bARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.

Email: kristian.kempe@monash.edu.

Experimental details and characterisation

2,2-Dimethylthiazolidine-4-carboxylic acid (Tz4CA)

Fig. S1. A) ¹H NMR (top) and B) ¹³C NMR in d_6 -DMSO of Tz4CA.

Fig. S2. A) ¹H NMR and B) ¹³C NMR in d_6 -DMSO of FTz4CA.

Fig. S3. A) ¹H NMR and B) ¹³C NMR of PEG-FTz4CA (**1**), in d_6 -DMSO; C) Enlarged MALDI-ToF-MS from Fig 1. of **1** with DP_n = 41 corresponding to C₉₀H₁₇₈N₂NaO₄₃S (Table S1).

Table S1. Molecular weight data obtained from MALDI-ToF-MS for α -methoxy- ω -functional-PEG polymers **1** – **4**.

Sample	n ^a	Empirical Formula	Adduct ^b	m/z _{th} ^b	m/z _{obs} c
PEG(Amine)	41	$C_{83}H_{169}NO_{41}$	M+Na	1859.106	1859.166
1	41	$C_{90}H_{178}N_2O_{43}S$	M+Na	2030.142	2030.301
2	41	$C_{86}H_{174}N_2O_{42}S$	M+Na	1962.115	1962.119
3	41	$C_{100}H_{191}N_{3}O_{45}S$	M+Na	2209.236	2209.188
4	41	C_{105} - $H_{196}F_3N_3O_{47}S$	M+Na	2363.260	2363.406

^aNumber of repeating units of PEG in the observed species composition; ^bDetermined by Bruker Isotope Pattern software; ^cDetermined by MALDI spectrum.

Fig. S4. A) ¹H NMR and B) ¹³C NMR of Cys_PEG (**2**), in d_6 -DMSO; C) Enlarged MALDI-ToF-MS of **2** with DP_n = 41 corresponding to C₈₆H₁₇₄N₂NaO₄₂S (Table S1); D) Enlarged MALDI-ToF-MS of **2'**.

Phenyl 2-((*tert*-butoxycarbonyl)amino)-3-phenylpropanethioate (BocPheSPh)

Fig. S5. A) ¹H NMR and B) ¹³C NMR of BocPheSPh in CDCl₃.

Native chemical ligation using BocPheSPh

The general procedure for native chemical ligation was followed using BocPheSPh as the thioester to yield **3** as a white solid.

Fig. S6. A) ¹H NMR and B) ¹³C NMR of **3/3'** in d_6 -DMSO.

Fig. S7. SEC trace (THF) of 3/3'.

Fig. S8. MALDI-ToF-MS overlay showing the shift in distribution following the NCL reaction of **2/2'** (red) with BocPheSPh to form **3/3'** (blue). The 44 Da PEG repeating unit was retained (Table S1).

Fig. S9. SEC (THF) chromatograms at t = 48h, demonstrating the in-situ reduction of **3**' to **3** in the presence of increasing amounts of DMPP.

Thiol-Michael addition using 2,2,2-trifluoroethyl acrylate (TFEA)

The general procedure for thiol-Michael addition was followed using 2,2,2-trifluoroethyl acrylate. The pure product **4** was isolated as a white solid.

Fig. S10. ¹⁹F NMR of TFEA (black) and thiol-ene product 4 (blue).

Fig. S11. ¹H NMR of modified polymer **4** upon *in-situ* reduction (DMPP) and thiol-Michael addition using polymer **3** and TFEA as a model acrylate.

Fig. S12 SEC (DMF) thiol-Michael addition product **4** of the reaction between polymer **3** and TFEA.

Thiol-Michael addition using oligo(MeOx-alt-AA)_nA macromonomer

The general procedure for thiol-Michael addition was followed using oligo(MeOx-alt-AA)_nA .

The pure product **5** was isolated as a white solid.

Fig. S13. (A) ¹H NMR (d_6 -DMSO) overlay of oligo(MeOx-alt-AA)_nA (MeOx_AA) before (black) and after (**5**, blue) thiol-ene reaction with NCL product **3**; (B) SEC (THF) showing molecular weight data for **5** and the change in molecular weight distribution relative to **3**.

Thiol-Michael addition using oligo(EtOx-alt-AA)_nA macromonomer

The general procedure for thiol-Michael addition was followed using $oligo(EtOx-alt-AA)_nA$. The pure product **6** was isolated as a white solid.

Fig. S14. (A) ¹H NMR (d_6 -DMSO) overlay of oligo(MeOx-alt-AA)_nA (EtOx_AA) before (black) and after (**6**, blue) thiol-ene reaction with NCL product **3**; (B) SEC (THF) showing molecular weight data for **6** and the change in molecular weight distribution relative to **3**.

Thiol-Michael addition using PEGA₄₈₀

The general procedure for thiol-Michael addition was followed using $PEGA_{480}$. The pure product **7** was isolated as a white solid.

Fig. S15. (A) ¹H NMR (d_6 -DMSO) overlay of PEGA₄₈₀ before (black) and after (**7**, blue) thiol-ene reaction with NCL product **3**; (B) SEC (THF) showing molecular weight data for **7** and the change in molecular weight distribution relative to **3**.

Synthesis of PEtOx₃₀-COSPh, 8

Fig. S16. ¹H NMR (CDCl₃) of PEtOx₃₀COSPh, 8

Fig. S17. SEC (DMF) of PEtOx₃₀COOH (black) and PEtOx₃₀COSPh (red) showing traces collected from DRI (solid) and UV (λ = 250 nm, dashed) detectors.

Native chemical ligation using PEtOx₃₀-COSPh

The general procedure for native chemical ligation was followed using $PEtOx_{30}$ -COSPh as the thioester to yield **9** as a white solid.

Fig. S18. ¹H NMR (*d*₆-DMSO) of the **9**.

Fig. S19. SEC (DMF) of **9+9'** before (dash) and after reduction to yield **9** (solid). Low molecular weight shoulder corresponds to unreacted PEtOx₃₀COSPh (**8**) which was not removed during dialysis against water (nMWCO = 3500 g/mol).

Thiol-Michael addition of 9 to macromonomer oligo(ButOx-alt-AA)_nA

The general procedure for thiol-Michael addition was followed using $oligo(ButOx-alt-AA)_nA$. The crude product was initially purified against water using a regenerated cellulose membrane (nMWCO = 3500 g/mol) which furnished a bimodal distribution (Fig. 3A, blue dash). Further purification by centrifugal filtration (nMWCO = 10000 g/mol) removed the low

molecular weight impurity (PEtOx derived from **8**, $M_n \approx 3100$ g/mol) to furnish pure miktoarm star polymer **10** as a white solid (Fig. 3A, blue solid; Fig 3B).

Fig. S20. SEC (DMF) of oligo(ButOx-alt-AA)nA .

Fig. S21. SEC (DMF) of **10** before (dash) and after purification (solid). Low molecular weight shoulder corresponds to unreacted $PEtOx_{30}COSPh$ (**8**) which was removed via centrifugal filtration (nMWCO = 10000 g/mol).