Supporting Information

Rapid synthesis of PEGylated multiblock polymers by sequencecontrolled polymerization in H₂O

Xiaoling Liu¹*, Yunbo Feng¹, Lunqiang Jin¹, Xueyi Wang,^{2,3} Xiang Zhang¹, Yi Xie¹, Changsheng Zhao¹*, Dietmar Appelhans², Brigitte Voit^{2,3}

¹College of Polymer Science and Engineering, Sichuan University, 610065 Chengdu, P. R. China
²Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
³Organic Chemistry of Polymers, Technische Universit ät Dresden, D-01062 Dresden, Germany
E-mail: liuxiaoling@scu.edu.cn; zhaochsh70@163.com

Table of Contents for Supporting Information:

	1.1 Syntheses of poly(ethylene glycol) macroinitiator	3
2.	SUPPORTING FIGURES	4
	Scheme S1. Schematic representation for synthesis of PEG_{45} -b-PHEA _n via aqueous SET-LR polymerization.	Р 4
	Figure S1. Ln([M] ₀ /[M]) vs. time kinetic plots of diblock polymer PEG ₄₅ -b-PHEA ₁₀ .	4
	Figure S2. Ln([M] ₀ /[M]) vs. time kinetic plots of diblock polymer PEG ₄₅ -b-PHEA ₄₀ .	5
	Figure S3. Ln([M] ₀ /[M]) vs. time kinetic plots of diblock polymer PEG ₄₅ -b-PHEA ₁₀₀ .	5
	Table S1. Characterization of diblock polymer via aqueous SET-LRP polymerization at 0 $^{\circ}$ C = H ₂ O in this study.	in 6
	Table S2. Characterization of diblock polymer PEG_{45} -b-PHEA ₁₀ via aqueous SET-LR polymerization at 0 °C in H ₂ O in this study.	Р 6
	Table S3. Characterization of diblock polymer PEG_{45} -b-PHEA ₄₀ via aqueous SET-LR polymerization at 0 °C in H ₂ O in this study.	Р 7
	Table S4. Characterization of diblock polymer PEG_{45} -b-PHEA ₁₀₀ via aqueous SET-LR polymerization at 0 $^{\circ}$ C in H ₂ O in this study.	Р 7
	Table S5. Characterization of homopolymer PEG_{45} -b-PHEA ₁₀ -b	b- or 8
	Table S6. Characterization of nonablock multiblock polymer PEG_{45} -b-PHEA ₁₀ -b-PNIPAM ₁ b-PHEA ₁₀ -b-PNIPAM ₁₀ -b-PHEA ₁₀ -b-PNIPAM ₁₀ -b-PNIPAM ₁₀ via aqueous SET LRP polymerization at 0 °C in H ₂ O based on PEG macroinitiator (DP _n = 10 per block).	ο- Γ- 9
	Table S7. Characterization of nonablock homopolymer PEG ₄₅ -b-PHEA ₅ -b-PHEA ₁₀ -b-PHEA ₁ b-PHEA ₂₀ -b-PHEA ₂₅ -b-PHEA ₃₀ -b-PHEA ₃₅ -b-PHEA ₄₀ via aqueous SET-LRP polymerization at 0 °C in H ₂ O based on PEG macroinitiator (DP = $\sum_{i=1}^{8} (5i)$ per block).	.5- on
	Table S8. Characterization of nonablock homopolymer PEG_{45} -b-PHEA30-b-PH	b- :P 1
	Table S9. Data analysis for the higher-molecular-weight pentablock homopolymer PEG_{45} - $PHEA_{100}$ -b-PHEA_ 100 -b-PHEA_ 100 -b-PHEA_ 100 .	b- 1

3 REFERENCE

12

1. EXPERIMENTAL SECTION

1.1 Syntheses of poly(ethylene glycol) macroinitiator

The previously reported method was used as follows^{1, 2}. Here, poly(ethylene glycol) terminated with methoxy (0.25 mmol) was dried under vacuum for 30 min then dissolved in anhydrous THF under nitrogen gas. After adding triethylamine (0.07 mL, 0.5 mmol), 2-bromoisobutyryl bromide (0.06 mL, 0.5 mmol), diluted in anhydrous THF, was finally added dropwise to reaction mixture over 15 min. The reaction mixture was stirred for 48 h at room temperature. After that, the mixture was filtered to remove the salt and the filtrate was concentrated by evaporation most of solvent. Finally, PEG macroinitiator was obtained by precipitation in *n*-hexane. Yield of the reaction was 86%.

¹H NMR (500.13 MHz, CDCl₃, δ): 1.94 (s, 6H), 3.38 (s, 3H), 3.64 (s, 180 H).

2. SUPPORTING FIGURES

Scheme S1. Schematic representation for synthesis of PEG_{45} -b-PHEA_n via aqueous SET-LRP polymerization.

Figure S1. Ln([M]₀/[M]) vs. time kinetic plots of diblock polymer PEG₄₅-b-PHEA₁₀.

Figure S2. $Ln([M]_0/[M])$ vs. time kinetic plots of diblock polymer PEG_{45} -b-PHEA₄₀.

Figure S3. Ln([M]₀/[M]) vs. time kinetic plots of diblock polymer PEG₄₅-b-PHEA₁₀₀.

Sample	Reactive time (min)	Monomer conversion ^{a)} (%)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\mathbf{\hat{D}}^{b)}$
PEG ₄₅ -b-PHEA ₁₀	20	>99	3300	3600	1.06
PEG ₄₅ -b-PHEA ₄₀	20	>99	6800	7200	1.05
PEG ₄₅ -b-PHEA ₁₀₀	20	>99	13800	14600	1.07

Table S1. Characterization of diblock polymer via aqueous SET-LRP polymerization at 0 $^{\circ}$ C in H₂O in this study.

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (\oplus) of the polymer were determined by SEC (PMMA calibration).

Table S2. Characterization of diblock polymer PEG_{45} -b-PHEA₁₀ via aqueous SET-LRP polymerization at 0 % in H₂O in this study.

Reaction time (min)	Monomer conversion ^{a)} (%)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\mathbf{\hat{D}}^{\mathbf{b})}$
4	30	2500	3100	1.10
8	56	2800	3300	1.09
12	81	3100	3500	1.08
16	97	3200	3600	1.08
20	>99	3300	3600	1.06

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (D) of the polymer were determined by SEC (PMMA calibration).

Reaction time (min)	Monomer conversion ^{a)} (%)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\mathbf{D}^{\mathbf{p}}$
4	26	3400	4400	1.08
8	51	4500	5300	1.07
12	75	5600	6200	1.07
16	95	6600	7100	1.06
20	>99	6800	7200	1.05

Table S3. Characterization of diblock polymer PEG_{45} -b-PHEA₄₀ via aqueous SET-LRP polymerization at 0 % in H₂O in this study.

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the copolymer were determined by SEC (PMMA calibration).

Table S4. Characterization of diblock polymer PEG_{45} -b-PHEA₁₀₀ via aqueous SET-LRP polymerization at 0 $^{\circ}$ C in H₂O in this study.

Reaction time (min)	Monomer conversion ^{a)} (%)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\mathbf{D}^{\mathbf{p})}$
4	24	4900	6600	1.12
8	47	7600	9000	1.10
12	69	11200	12300	1.09
16	88	12400	13400	1.09
20	>99	13800	14600	1.07

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (D) of the copolymer were determined by SEC (PMMA calibration).

Table S5. Characterization of homopolymer PEG_{45} -b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀-b-PHEA₁₀ via aqueous SET-LRP polymerization at 0 °C in H₂O based on PEG macroinitiator (DP_n = 10 per block).

Block	DP _n	Monomer	Time per	M _{n,th}	M _{n,SEC} ^{b)}	$\tilde{\mathrm{D}}^{\mathrm{b})}$
number	(per block)	conversion ^{a)} (%)	block (min)	(g/mol)	(g/mol)	
Block 1	10	>99	20	3300	3600	1.06
Block 2	10	>99	20	4500	4900	1.06
Block 3	10	>99	20	5600	6100	1.05
Block 4	10	>99	20	6800	7400	1.07
Block 5	10	>99	25	8000	8800	1.09
Block 6	10	>99	25	9100	10000	1.08
Block 7	10	>99	30	10300	11500	1.08
Block 8	10	>99	30	11400	12800	1.10
Block 9	10	>97	40	12500	14300	1.13
Block 10	10	>88	50	13500	15800	1.17
Block 11	10	>75	60	14400	17100	1.19
Block 12	10	>60	90	15100	18400	1.25

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the multiblock homopolymer were determined by SEC (PMMA calibration).

DP _n (per block)	Monomer conversion ^{a)} (%)	Time per block (min)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\overline{\mathrm{D}}^{\mathrm{b})}$
10	>99	15	3300	3600	1.06
10	>99	15	4400	4800	1.07
10	>99	15	5600	6200	1.07
10	>99	15	6700	7500	1.09
10	>99	15	7900	8900	1.09
10	>99	20	9000	10100	1.08
10	>98	25	10100	11500	1.09
10	>97	30	11200	12800	1.10
	DP _n (per block) 10 10 10 10 10 10 10 10 10	DP _n (per block) Monomer conversion ^{a)} (%) 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >99 10 >98 10 >97	DP_n (per block)Monomer conversion ^{a)} (%)Time per block (min)10>991510>991510>991510>991510>991510>991510>992010>982510>9730	$\begin{array}{c c c c c c } DP_n & Monomer & Time per & M_{n,th} \\ (per block) & conversion^{a)}(\%) & block (min) & M_{n,th} \\ (g/mol) & & & \\ 10 & & & & \\ 11200 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S6. Characterization of nonablock multiblock polymer PEG_{45} -b-PHEA₁₀-b-PNIPAM₁₀-b-PHEA₁₀-b-PNIPAM₁₀-b-PHEA₁₀-b-PNIPAM₁₀ via aqueous SET-LRP polymerization at 0 °C in H₂O based on PEG macroinitiator (DP_n = 10 per block).

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the polymer were determined by SEC (PMMA calibration).

2						
Block	DP_n	Monomer	Time per	$M_{n,th}$	$M_{n,SEC}^{b)}$	$\overline{\mathrm{D}}^{\mathrm{b})}$
number	(per block)	conversion ^{a)} (%)	block (min)	(g/mol)	(g/mol)	
Block 1	5	>99	15	2700	2800	1.05
Block 2	10	>99	20	3900	4300	1.07
Block 3	15	>99	20	5600	6200	1.06
Block 4	20	>99	25	8000	8700	1.05
Block 5	25	>99	25	10900	11900	1.08
Block 6	30	>99	30	14300	15500	1.10
Block 7	35	>99	30	18400	19900	1.12
Block 8	40	>98	30	23000	25100	1.14

Table S7. Characterization of nonablock homopolymer PEG_{45} -b-PHEA₅-b-PHEA₁₀-b-PHEA₁₅-b-PHEA₂₀-b-PHEA₃₀-b-PHEA₃₅-b-PHEA₄₀ via aqueous SET-LRP polymerization at 0 °C in H₂O based on PEG macroinitiator (DP = $\sum_{i=1}^{8} (5i)$ per block).

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the multiblock homopolymer were determined by SEC (PMMA calibration).

Block number	DP _n (per block)	Monomer conversion ^{a)} (%)	Time per block (min)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	$\mathcal{D}^{b)}$
Block 1	30	>99	20	5600	6000	1.09
Block 2	30	>99	20	9100	9700	1.07
Block 3	30	>99	30	12600	13400	1.08
Block 4	30	>99	30	16100	17000	1.10
Block 5	30	>99	30	19600	20800	1.09
Block 6	30	>99	35	23000	24700	1.11
Block 7	30	>99	40	26500	29000	1.13
Block 8	30	>98	40	30000	33300	1.15

Table S8. Characterization of nonablock homopolymer PEG_{45} -b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀-b-PHEA₃₀ via aqueous SET-LRP polymerization at 0 % in H₂O based on PEG macroinitiator (DP_n = 30 per block).

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the multiblock polymer were determined by SEC (PMMA calibration).

Table S9. Data analysis for the higher-molecular-weight pentablock homopolymer PEG_{45} -b-PHEA₁₀₀-b-PHEA₁₀₀-b-PHEA₁₀₀-b-PHEA₁₀₀.

Block number	DP _n (per block)	Monomer conversion ^{a)} (%)	Time per block (min)	M _{n,th} (g/mol)	M _{n,SEC} ^{b)} (g/mol)	Đ ^{b)}
Block 1	100	>99	20	13800	14600	1.08
Block 2	100	>99	30	25400	26900	1.13
Block 3	100	>98	35	37000	39100	1.16
Block 4	100	>95	45	48600	51700	1.19

^{a)} Monomer conversion was measured by ¹H NMR. ^{b)} Number-average molecular weight (M_n) and dispersity (Đ) of the multiblock polymer were determined by SEC (PMMA calibration).

3 REFERENCE

- 1. Iyisan B, Kluge J, Formanek P, Voit B, Appelhans D. Multifunctional and Dual-Responsive Polymersomes as Robust Nanocontainers: Design, Formation by Sequential Post-Conjugations, and pH-Controlled Drug Release. *Chemistry of Materials* 2016, **28**(5): 1513-1525.
- 2. Liu X, Formanek P, Voit B, Appelhans D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. *Angew. Chem. Int. Ed.* 2017, **56**(51): 16233-16238