Temperature-Controlled Formation of Inverse Mesophases Assembled from a **Rod–Coil Block Copolymer**

Xiaolin Lyu, Zhehao Tang, Anqi Xiao, Wei Zhang, Hongbing Pan, Zhihao Shen,* and Xing-He Fan

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

* To whom the correspondence should be addressed. E-mail: zshen@pku.edu.cn

Table of Contents

Synthetic proc	edure	S2
Table S1	Characteristics of PEO-b-PMPCS	S2
Fig. S1	GPC curves of PEO- <i>b</i> -PMPCS	S3
Fig. S2	¹ H NMR spectrum of PEO- <i>b</i> -PMPCS	S3
Fig. S3	SEM, TEM, and SAXS results of $E_{45}M_{59}$ at different temperatures	S3
Fig. S4	SEM, TEM, and SAXS results of $E_{45}M_{62}$ at different temperatures	S4
Fig. S5	SAXS and SEM results of $E_{45}M_{59}$ and $E_{45}M_{62}$ at 50 °C and 60 °C	S5
Fig. S6	SEM, TEM, and SAXS results of $\rm E_{45}M_{70}$ at 20 $^{o}\rm C$	S5
Fig. S7	SEM, TEM, and SAXS results of $E_{45}M_{76}$ at different temperatures	S6
Fig. S8	The schematic of the structure with more negative curvature	S6
Fig. S9	SEM micrographs of the silica cubosome	S6
Fig. S10	SEM micrographs of the surfaces of the polymer and silica cubosomes	S 7

Synthesis of PEO-*b*-PMPCS

The monomethyl ether PEO2000 used was bought from Aldrich-Sigma. Its molar mass was confirmed by gel permeation chromatography (GPC) and matrix-assisted laser desorption/ ionization time of flight (MALDI-TOF) mass spectrometry, which was consistent with the label of the monomethyl ether PEO2000. The macroinitiator was prepared through esterification reaction between PEO2000 and 2-bromoisobutyryl bromide, and the purified white product was obtained by recrystallization for five times in diethyl ether.¹ Its chemical structure was confirmed by ¹H NMR (Fig. S2a). The synthesis of the monomer 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene (MPCS) can refer work.²⁻³ poly(ethylene to the previous And oxide)-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PEO-b-PMPCS) was synthesized by atom-transfer radical polymerization (ATRP).¹ The ¹H NMR results of the block copolymers are shown in Fig. S2c.

	¹ H NMR ^a			GPC ^c			
Sample	Notation	M _n (g/mol)	$f_{\rm PMPCS}$ (%) ^b	Notation	M _n (g/mol)	$f_{\rm PMPCS}$ (%) ^b	$\boldsymbol{\mathcal{P}}_{\mathbf{M}}^{d}$
1	E45M59	25800	91.3	E45M37	16900	86.8	1.16
2	E45M62	27000	91.7	E45M40	18100	87.7	1.17
3	E45M70	30300	92.6	E45M50	22300	90.0	1.20
4	E45M76	32700	93.1	E45M53	23400	90.4	1.25

Table S1. PEO-b-PMPCS Samples Characterized by ¹H NMR and GPC

^a The DPs of PMPCS and number-averaged MWs were determined by ¹H NMR.

^{*b*} The densities of PEO and PMPCS at 1.13 g/cm³ and 1.28 g/cm³, respectively, were used to calculate the volume fraction of PMPCS (f_{PMPCS}).

^c The DPs of PMPCS and number-averaged MWs were determined by GPC.

^{*d*} The molar-mass dispersity $(D_{\rm M})$ values were determined by GPC.

Fig. S1 GPC curves of PEO-*b*-PMPCS with different molecular weights.

Fig. S2 ¹H NMR spectra of PEO with D₂O as the solvent (a), PEO-*b*-PMPCS with CDCl₃ as the solvent (b), and the four PEO-*b*-PMPCS used in this work with CDCl₃ as the solvent (c). (*m* is calculated with the equation, $m = 22.5 / (I_{a+c}/I_d - 0.75)$, where I_{a+c} and I_d are the integrals of hydrogen peaks shown above.).

Fig. S3 SEM micrograph of the spongy structure self-assembled by $E_{45}M_{59}$ at 5 °C (a); SEM (b) and TEM (c) micrographs of the spongy structure self-assembled by $E_{45}M_{59}$ at 20 °C; SAXS profiles of spongy structures self-assembled by $E_{45}M_{59}$ at 5 and 20 °C (d).

Fig. S4 SEM and TEM micrographs of spongy structures self-assembled by $E_{45}M_{62}$ at 5 °C (a, b) and 20 °C (c, d); low-magnification (e) and high-magnification (f) SEM micrographs, SEM micrograph viewed along the [110] and [111] directions (g), and TEM micrograph (h) of the $Pn\bar{3}m$ polymer cubosome self-assembled by $E_{45}M_{62}$ at 40 °C; SAXS profiles of $E_{45}M_{62}$ self-assembling at 5 °C, 20 °C (i), and 40 °C (j). (The scattering vector ratio of the peaks in Fig. S4j is $2^{1/2}:3^{1/2}:4^{1/2}:6^{1/2}:8^{1/2}:9^{1/2}:10^{1/2}:12^{1/2}:14^{1/2}:16^{1/2}$, corresponding to the (110), (111), (200), (211), (220), (221), (310), (222), (321), and (400) reflections of a $Pn\bar{3}m$ cubic cell with a = 43.1 nm)

Fig. S5 SAXS profile of *p6mm* polymer hexasomes self-assembled by $E_{45}M_{59}$ at 50 °C and 60 °C (a); SEM micrographs of polymer hexasomes self-assembled by $E_{45}M_{59}$ at 50 °C (b, c) and 60 °C (d, e); SAXS profile of *p6mm* polymer hexasomes self-assembled by $E_{45}M_{62}$ at 50 °C and 60 °C (f); SEM micrographs of polymer hexasomes self-assembled by $E_{45}M_{62}$ at 50 °C (g, h) and 60 °C (i).

Fig. S6 Low-magnification (a) and high-magnification (b) SEM micrographs, TEM micrograph (c), and SAXS profile (d) of the $Pn\bar{3}m$ polymer cubosome self-assembled by $E_{45}M_{70}$ at 20 °C.

Fig. S7 SAXS profiles of $E_{45}M_{76}$ self-assembling at different temperatures (a); TEM micrograph of the *p6mm* polymer hexasome self-assembled by $E_{45}M_{76}$ at 5 °C (b); TEM and SEM micrographs of *p6mm* polymer hexasomes self-assembled by $E_{45}M_{76}$ at 20 °C (c, d) and 40 °C (e, f).

With the packing parameter P increased

Fig. S8 The variations of the curvature towards the water side and packing parameter with increasing volume and chain length of the hydrophobic part in solutions.

Fig. S9 SEM micrographs of the $Pn\bar{3}m$ silica cubosome observed from different orientations.

Fig. S10 SEM micrographs of the surface (a) and fractured surface (b) of the $Pn\bar{3}m$ polymer cubosome and that of the surface of the silica cubosome (c).

(1) Lyu, X.; Xiao, A.; Zhang, W.; Hou, P.; Gu, K.; Tang, Z.; Pan, H.; Wu, F.; Shen, Z.; Fan, X.-H. Head-Tail Asymmetry Determines the Formation of Polymer Cubosomes or Hexasomes in A Rod-Coil Amphiphilic Block Copolymer. *Angewandte Chemie International Edition* **2018**, *57*, 10132-10136.

(2) Zhang, D.; Liu, Y.-X.; Wan, X.-H.; Zhou, Q.-F. Synthesis and Characterization of A New Series of "Mesogen-Jacketed Liquid Crystal Polymers" Based on the Newly Synthesized Vinylterephthalic Acid. **1999**, *32*, 5183-5185.

(3) Ye, C.; Zhang, H.-L.; Huang, Y.; Chen, E.-Q.; Lu, Y.; Shen, D.; Wan, X.-H.; Shen, Z.; Cheng, S. Z. D.; Zhou, Q.-F. Molecular Weight Dependence of Phase Structures and Transitions of Mesogen-Jacketed Liquid Crystalline Polymers Based on 2-Vinylterephthalic Acids. **2004**, *37*, 7188-7196.