Electronic Supporting Information

Dewar Lactone as a Modular Platform to a New Class of Substituted Poly(acetylene)s

Jinwon Seo, *a,b,‡* Stanfield Y. Lee, *a,‡* and Christopher W. Bielawski^{*a,b,c,**}

^a Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea

^b Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^c Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. Email: bielawski@unist.ac.kr.

^{*t*} These authors contributed equally to this work.

Table of Contents

UV-vis Spectroscopy Data	S3
pKa Values of Pyridine Derivatives	\$5
Infrared and Raman Spectra	86
XPS Survey and Elemental Analysis Data	S 8
DSC and TGA Data	S 9
GPC Data	S10
NMR Spectra	S11
High Resolution Mass Spectrometry Data	S41
References	S42

UV-vis Spectroscopy Data

Figure S1. (a) UV-vis absorption spectra recorded for THF solutions of 7a-e or a MeOH solution of 7f ($[7]_0 = 1.3 \times 10^{-2}$ mg mL⁻¹ in terms of polymer repeat unit) at ambient temperature.

Polymer	λ_{max}	HOMO-LUMO	Absorption Onset
(side group)	(nm)	(eV) ^{<i>c</i>}	(nm)
7a (methyl ester)	322	2.03	611
7b (ethyl ester)	365	1.98	626
7c (2-ethylhexyl ester)	357	2.02	614
7d (benzyl ester)	414	1.91	663
7e (2,2,2-trifluoroethyl ester)	n/a ^b	2.08	597
7f (carboxylic acid)	395	1.90	654

Table S1. Electronic properties of 7a-e in THF and 7f in MeOH.^a

^{*a*} The λ_{max} and HOMO-LUMO gap values recorded for **7a-e** were measured in THF and those recorded for **7f** were measured in MeOH. [**7**]₀ = 1.3 × 10⁻² mg mL⁻¹ in terms of polymer repeat unit at ambient temperature. ^{*b*} The λ_{max} of **7e** appears to be before the solvent UV cutoff value. ^{*c*} The HOMO-LUMO gaps were determined from the onsets of the absorption signals.

Figure S2. UV-vis absorption spectra recorded for poly(1c) as a function of added TEA per repeat unit of poly(1c) (indicated) in THF ($[poly(1c)]_0 = 1.1 \times 10^{-2}$ mg mL⁻¹ in terms of polymer repeat unit) at ambient temperature.

Figure S3. A plot of absorbance versus molar concentration (M) of 7g and the calculated extinction coefficient (ϵ as determined by the UV-vis absorbance value measured at 395 nm. Note: the molar concentration (M) were calculated using the repeat unit of 7g in MeOH. Measurements were taken in a quartz cuvette with a 1 cm path length.

Pyridine Derivative	Predicted pKa ^b	Experimental pKa	Polymerization Observed
2-nitro	-7.64	n/a	Yes
2-cyano	0.98	-0.26 ^d	Yes
2-fluoro	-0.92	0.44 ^c	Yes
2-chloro	1.13	0.49^{c}	No ^g
2-bromo	1.47	0.7^{c}	No ^g
4-nitro	1.06	1.6 ^e	No
2-iodo	1.65	1.82^{c}	No
3-bromo	3.45	2.84 ^c	No
4-bromo	4.01	3.96 ^f	No
2- <i>t</i> -butyl	5.29	n/a	No
2-isopropyl	5.46	n/a	No
lutidine	6.54	6.60 ^c	No

Table S2. The polymerization of 1c in the presence of a variety of pyridine derivatives.^a

^{*a*} The polymerization reaction was conducted with **1c** (0.2 M in CD₂Cl₂) in the presence of HG2 catalyst ([**1c**]₀/[HG2]₀ = 82) and the pyridine indicated ([HG2]/[pyr.] = 0.5) for 12 h under a nitrogen atmosphere at ambient temperature. ^{*b*} Predicted pKa values were calculated using MarvinSketch v. 19.13. ^{*c*} pKa values were taken from reference 1. ^{*d*} pKa values were taken from reference 2. ^{*e*} pKa values were taken from the CRC Handbook of Chemistry and Physics, 91st Ed. ^{*f*} pKa values were taken from reference 3. ^{*g*} Although broad ¹H NMR signals consistent with poly(**1c**) were observed, signals that corresponded to **1c** were also present, indicating that monomer consumption was incomplete.

Infrared and Raman Spectra

Figure S4. Infrared spectra recorded for poly(**1a-e**) (blue) and their corresponding products **7a-e** (red) formed through elimination.

Figure S5. Infrared spectra recorded for poly(**1e**) (blue) and the water-soluble poly(acetylene) derivative **7f** formed from a concurrent elimination/hydrolysis reaction using LiOH (red).

Figure S6. Infrared spectra recorded for G3 (black), an arrested catalyst (red) and monomer 1c (blue). Conditions: $[1c]_0/[G3]_0 = 1.0$; [3-bromopyridine]_0/[G3]_0 = 10; $[1c]_0 = 0.2$ M in CH₂Cl₂. The vertical black dotted line is centered at 1732 cm⁻¹.

Figure S7. Raman spectra recorded before (blue) and after (red) elimination for (a) poly(**1a**), (b) poly(**1b**), (c) poly(**1c**), (d) poly(**1d**) and (e) poly(**1e**).

Additional X-Ray Photoelectron Spectroscopy Measurement Details and Data

XPS survey spectra were recorded using a Thermo Fisher Scientific Escalab 250Xi. The measurement was taken over a spot size of 500 μ m at an angle normal to the surface with charge compensation using a combined/flood gun operating at a current of 50 μ A and an ion voltage of 2 V. Following previously reported procedures,⁴ survey spectra were initially calibrated by recording the gold 4f_{7/2} spectrum of a gold foil. The spectrum was then shifted such that the peak position of the gold 4f_{7/2} spectrum was equal to 84.0 eV. The shifted value was then applied to all subsequent XPS spectra. Survey spectra were taken at a pass energy of 100 eV (5 scans).

Figure S8. (a) XPS survey spectra recorded for (a) **7f** as well as (b) poly(**1c**) (blue) and **7c** (red). Note: Relatively weak chlorine 2p signals (ca. 200 eV) were recorded during the analyses of **7f** and **7c**.

	Carbon	Hydrogen	Nitrogen	Sulfur
Weight (%) (Experimental)	54.3	4.3	0.0	0.0
Atomic (%) (Experimental)	4.5	4.3	0.0	0.0
Weight (%) (Theoretical)	60.0	4.0	0.0	0.0
Atomic (%) (Theoretical)	5.0	4.0	0.0	0.0

Table S3. Elemental analysis data recorded for 7f.

TGA and DSC Data

Figure S9. (a) TGA data recorded for poly(**1a-d**) as obtained under an atmosphere of nitrogen and at a heating rate of 10 °C min⁻¹. (b) DSC data recorded for **7c** as obtained under an atmosphere of nitrogen and at a heating and cooling rate of 20 °C min⁻¹. Measurements for poly(**1e**) were not conducted due to the presence of fluorine in the material.

Figure S10. GPC data for poly(**1a-e**). Conditions and data: polymerizations were performed using HG2 as a catalyst and CH₂Cl₂ as a solvent under an atmosphere of nitrogen at 25 °C. Polymerizations were conducted for 60 min under an atmosphere of nitrogen and monitored for completion by thin-layer chromatography. GPC data are reported against poly(styrene) standards in THF. (a) [**1a**]₀ / [Ru]₀ = 27; $M_n = 15.7$ kDa, D = 1.24 (yellow); 71% yield. (b) [**1b**]₀ / [Ru]₀ = 125; $M_n = 21.5$ kDa, D = 1.18 (blue); 79% yield. (c) [**1c**]₀ / [Ru]₀ = 82; $M_n = 24.9$ kDa, D = 1.17 (black); 88% yield. (d) [**1d**]₀ / [Ru]₀ = 90; $M_n = 24.2$ kDa, D = 1.20 (violet); 93% yield. (e) [**1e**]₀ / [Ru]₀ = 15; $M_n = 7.3$ kDa, D = 1.64 (red); 90% yield.

NMR Spectra

```
(a) HG2 (0.3 equiv.) + 1c (1.0 equiv.) + 3-bromopyridine (0.6 equiv.)
```


Figure S11. ¹H NMR spectra recorded in CD₂Cl₂ for various mixtures (indicated).

Figure S12. ¹H NMR spectrum recorded for a mixture of poly(1c) and TEA (1 : 1 equiv. in terms of polymer repeat unit of poly(1c)) at 25 °C in CD_2Cl_2 .

Figure S13. ¹H NMR spectrum recorded for triethylammonium chloride ($Et_3NH^+Cl^-$) at 25 °C in CDCl₃. The salt was isolated via filtration from the elimination reaction of poly(**1c**) using TEA (10 equiv. based on the repeat unit of the polymer).

Figure S14. ¹H NMR spectrum recorded for 3 at 25 °C in CD₂Cl₂.

Figure S15. ¹H NMR spectrum recorded for 4 at 25 °C in CDCl₃.

Figure S16. ¹H NMR spectrum recorded for 5 at 25 °C in CDCl₃.

Figure S17. ¹H NMR spectrum recorded for 1a at 25 °C in CD₂Cl₂.

Figure S18. ¹³C NMR spectrum recorded for 1a at 25 °C in CD₂Cl₂.

Figure S19. ¹H NMR spectrum recorded for 1b at 25 °C in CD₂Cl₂.

Figure S20. ¹³C NMR spectrum recorded for **1b** at 25 °C in CD₂Cl₂.

Figure S21. ¹H NMR spectrum recorded for 1c at 25 °C in CD₂Cl.

Figure S22. ¹³C NMR spectrum recorded for 1c at 25 °C in CD₂Cl₂.

Figure S23. ¹H NMR spectrum recorded for 1d at 25 °C in CD₂Cl₂.

Figure S24. ¹³C NMR spectrum recorded for 1d at 25 °C in CD₂Cl₂.

Figure S25. ¹H NMR spectrum recorded for **1e** at 25 °C in CD₂Cl₂.

Figure S26. ¹³C NMR spectrum recorded for 1e at 25 °C in CD₂Cl₂.

Figure S27. ¹⁹F NMR spectrum recorded for 1e at 25 °C in CD₂Cl₂.

Figure S28. ¹H NMR spectrum recorded for poly(1a) at 25 °C in CDCl₃.

Figure S29. ¹H NMR spectrum recorded for poly(1b) at 25 °C in CDCl₃.

Figure S30. ¹H NMR spectrum recorded for poly(**1c**) at 25 °C in CDCl₃.

Figure S31. ¹H NMR spectrum recorded for poly(1d) at 25 °C in CDCl₃.

Figure S32. ¹H NMR spectrum recorded for poly(**1e**) at 25 °C in CDCl₃.

Figure S33. ¹⁹F NMR spectrum recorded for poly(1e) at 25 °C in CD₂Cl₂.

Figure S34. ¹H NMR spectrum recorded for 7a at 25 °C in CD₂Cl₂.

Figure S35. ¹H NMR spectrum recorded for 7b at 25 °C in CD₂Cl₂.

Figure S36. ¹H NMR spectrum recorded for **7c** at 25 °C in CD₂Cl₂.

Figure S37. ¹H NMR spectrum recorded for 7d at 25 °C in CD₂Cl₂.

Figure S38. ¹H NMR spectrum recorded for 7e at 25 °C in CD₂Cl₂.

Figure S39. ¹⁹F NMR spectrum recorded for 7e at 25 $^{\circ}$ C in CD₂Cl₂.

Figure S40. ¹H NMR spectrum recorded for **7f** at 25 °C in CD₃OD.

High Resolution Mass Spectrometry Data

Figure S41. HR-MS spectroscopy data as recorded in the ESI mode upon analysis of reaction mixtures containing (a) **1c** (3.0 equiv.), G3 (1.0 equiv.) and 3-bromopyridine (10 equiv.) in CH₂Cl₂ (red) and (b) **1c** (3.0 equiv.), HG2 (1.0 equiv.) and 3-bromopyridine (2.0 equiv.) in CH₂Cl₂ (blue). Conditions: $[1c]_0 = 0.2$ M in CH₂Cl₂ room temperature, 12 h under nitrogen atmosphere.

References

- R. Williams, pKa data compiled by R. Williams. http://www.chem.wisc.edu/areas/organic/index-chem.htm. 2011. [08/16/2019]
- N. M. Marković, N. S. Marinković and R. R. Adžić, J. Electroanal. Chem. and Interfacial Electrochem., 1991, 314, 289-306.
- 3. A. Fischer, W. J. Galloway and J. Vaughan, J. Chem. Soc., 1964, 3591-3596.
- 4. M. T. Anthony and M. P. Seah, *Surf. Interface Anal.*, 1984, **6**, 107-115.