Supporting Information: Dual-Dynamic

Interpenetrated Networks Tuned through

Macromolecular Architecture

Borui Zhang, Jun Ke, Jafer R. Vakil, Sean C. Cummings, Zachary A. Digby, Jessica L. Sparks, Zhijiang Ye, Mehdi B. Zanjani, Dominik Konkolewicz*

Table S1. Composition (molar ratio), GPC calculated number average molecular weight (M_n), and GPC calculated dispersity values (M_w/M_n) of PEA-UPyA polymer.

Entry	Polymer	PADTC	AIBN	EA	UPyA	M _n	M _w /M _n
1	PEA ₁₀₀ -UPyA ₅	1	0.2	100	5	64166	1.17
2	PEA ₁₀₀ -UPγA _{7.5}	1	0.2	100	7.5	87793	1.13
3	PEA ₁₀₀ -UPyA ₁₀	1	0.2	100	10	91937	1.21
4	PEA ₅₀ -UPγA _{3.75}	1	0.2	50	3.75	9244	1.17
5	PEA ₁₅₀ -UPyA _{11.25}	1	0.2	150	11.25	26991	1.16

Table S2. Calculated units of UPyA and EA in PEA-UPyA polymer and related number average molecular weight (M_n) obtained from NMR.

Entry	Polymer	3.30-3.05 ppm	Units of UPyA	4.40-3.80 ppm	Units of EA	M _n by NMR
1	PEA ₁₀₀ -UPyA ₅	21.8 protons	5.0	205.0 protons	100.5	12400
2	PEA ₁₀₀ -UPyA _{7.5}	31.4 protons	7.4	234.4 protons	115.2	14900
3	PEA ₁₀₀ -UPyA ₁₀	54.0 protons	13.0	220.1 protons	108.0	16500
4	PEA ₅₀ -UPyA _{3.75}	23.0 protons	5.3	144.1 protons	70.1	9530
5	PEA ₁₅₀ -UPyA _{11.25}	44.0 protons	10.5	362.7 protons	179.4	22600

Table S3. Composition (molar ratio), reaction duration, GPC calculated weight average molecular weight (M_n), and GPC calculated dispersity values (M_w/M_n) of PEA-FMA polymer.

Entry	Polymer	PADTC	AIBN	EA	FMA	Duration	M _n	M _w /M _n
1	PEA ₁₀₀ -FMA ₅	1	0.2	100	5	5 h	11725	1.05
2	PEA ₁₀₀ -FMA _{7.5}	1	0.2	100	7.5	6 h	10410	1.05
3	$PEA_{100}\text{-}FMA_{10}$	1	0.2	100	10	9 h	11354	1.06
4	PEA ₅₀ -UPyA _{3.75}	1	0.2	50	3.75	6 h	5520	1.08
5	PEA ₁₅₀ -UPyA _{11.25}	1	0.2	150	11.25	7 h	17860	1.09

0	V 10					
Entry	Polymer	5.10-4.80 ppm	Units of FMA	4.25-3.90 ppm	Units of EA	M _n by NMR
1	PEA ₁₀₀ -FMA ₅	11 protons	5.5	194 protons	97.0	11000
2	PEA ₁₀₀ -FMA _{7.5}	15.2 protons	7.6	193.2 protons	96.6	11200
3	PEA_{100} -FMA_{10}	20.3 protons	10.2	185.3 protons	92.7	11300
4	PEA ₅₀ -UPyA _{3.75}	10.3 protons	5.2	109.6 protons	54.8	6670
5	PEA ₁₅₀ -UPyA _{11.25}	26.0 protons	13.0	382.0 protons	191.0	21600

Table S4. Calculated units of FMA and EA in PEA-FMA polymer and related number average molecular weight (M_n) obtained from NMR.

Figure S1. Fitted Young's modulus curves for each IPN materials.

Figure S2. GPC traces of PEA_{50} -FMA_{3.75}, and PEA_{50} -UPyA_{3.75}.

Figure S3. PEA_{100} -UPyA₅-FMA₅ uncut variability.

Figure S5. PEA₁₀₀-UPyA₁₀-FMA₁₀ uncut variability.

Figure S7. PEA₁₅₀-UPyA_{11.25}-FMA_{11.25} uncut variability.

Figure S8. Infrared (IR) spectrum for PEA₁₀₀-UPyA₅-FMA₅ IPN material.

Table S5. IR assignment	of PEA100-UP	yA5-FMA5 I	PN material
0		/	

Proposed Assignment	Reference
C-H stretch	1
C-H stretch	2, 3
C=O ester stretch	3
C=C stretch	1
C=C bending	1
C-H bending	1
C-O antisymmetric stretching	3
C-O symmetric stretching	3
C-N stretch	1
C-H out of plane bending	1
	Proposed Assignment C-H stretch C-H stretch C=O ester stretch C=C stretch C=C bending C-H bending C-O antisymmetric stretching C-O symmetric stretching C-N stretch C-H out of plane bending

Figure S10. Rheological strain sweep of PEA₁₀₀-UPyA₅-FMA₅ IPN at angular frequency of 0.1 Hz.

Figure S11. Rheological frequency sweep of PEA₁₀₀-UPyA₅-FMA₅ IPN using 0.1% strain and 0.1 Hz.

Figure S12. Rheological frequency sweep of PEA₁₀₀-UPyA_{7.5}-FMA_{7.5} IPN using 0.1% strain and 0.1 Hz.

Figure S13. Rheological frequency sweep of PEA₁₀₀-UPyA₁₀-FMA₁₀ IPN using 0.1% strain and 0.1 Hz.

Figure S14. Rheological frequency sweep of PEA₅₀-UPyA_{3.75}-FMA_{3.75} IPN using 0.1% strain and 0.1 Hz.

Figure S15. Rheological frequency sweep of PEA₁₅₀-UPyA_{11.25}-FMA_{11.25} IPN using 0.1% strain and 0.1 Hz.

Figure S16. Typical stress vs strain curves for Uncut and 1 h cold and hot self-healing properties of PEA₁₀₀-UPyA_{7.5}-FMA_{7.5} IPN and PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} SN materials.

Figure S17. Self-healing properties of PEA_{100} -UPy A_{10} -FMA₁₀ IPN materials at 90 °C. PEA_{100} -UPy A_{10} -FMA₁₀ No self-healing was observed for the of PEA_{100} -UPy A_{10} -FMA₁₀ materials at room temperature.

Figure S18. Self-healing properties of PEA_{50} -UPyA_{3.75}-FMA_{3.75} IPN materials. (A) Typical stress vs strain curves after different healing time for cold heal of PEA_{50} -UPyA_{3.75}-FMA_{3.75} IPN at room temperature. (B) Typical stress vs strain curves after different healing time for hot heal of PEA_{50} -UPyA_{3.75}-FMA_{3.75} IPN at room temperature. (B) °C. (C) Comparison of 1h hot heal stress-strain curve with 1 h cold heal stress-strain curve. (D) Photograph of a PEA_{50} -UPyA_{3.75}-FMA_{3.75} IPN indicating site of original cut and break point during mechanical testing after 4h of healing at 90 °C.

Figure S19. Self-healing properties of PEA₁₅₀-UPyA_{11.25}-FMA_{11.25} IPN materials at 90 °C. They don't self-heal at room temperature.

Figure S20. Creep deformation of all five IPN materials.

References

1. Palleros, D. R., *Experimental organic chemistry*. Wiley & Sons: 2000.

2. Vargün, E.; Usanmaz, A., Polymerization of 2-hydroxyethyl acrylate in bulk and solution by chemical initiator and by ATRP method. *J. Polym. Sci. A* **2005**, *43*, 3957-3965.

3. Wang, L.; Dong, W.; Xu, Y., Synthesis and characterization of hydroxypropyl methylcellulose and ethyl acrylate graft copolymers. *Carbohydr. Polym.* **2007**, *68*, 626-636.