Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Copolymers of ϵ -caprolactone and ϵ -caprolactam via polyesterification: Towards

sequence-controlled poly(ester amide)s

Fu-Rong Zeng,^a Jing Xu,^b Lin-Hao Sun,^a Jimei Ma,^a Hong Jiang^a and Zi-Long Li*^a

^aDepartment of Chemistry, College of Science, Huazhong Agricultural University,

Wuhan 430070, Hubei, China

^bCollege of Materials Science and Engineering, Wuhan Textile University, Wuhan

430200, Hubei, China

* Corresponding author:

Tel.: +86 27 8728 4018.

E-mail address: lizilong@mail.hzau.edu.cn (Z.-L. Li)

Contents

- **Fig. S1** ¹H NMR spectrum of **P6** in TFEA/CDCl₃ = 4/1.
- **Fig. S2** ¹³C NMR spectrum of **P6** in TFEA/CDCl₃ = 4/1.
- Fig. S3 ¹H NMR spectrum of monomer 2 in CDCl₃.
- Fig. S4 ¹³C NMR spectrum of monomer 2 in CDCl₃.
- Fig. S5 Kinetic analysis for the synthesis of P0 in CDCl₃ based on ¹H NMR spectra.
- **Fig. S6** Kinetic analysis for the synthesis of **P5** in DMSO- d_6 based on ¹H NMR spectra.
- Fig. S7 ESI-MS spectrum of P0 supernatant.
- Fig. S8 ESI-MS spectrum of P5 supernatant.
- Fig. S9 ¹³C NMR spectra of PO-P5 in DMSO- d_6 .
- Fig. S10 GPC traces of PO-P3.

Fig. S11 GPC traces of kinetic analysis for the synthesis of PO.

- Fig. S12 IR spectra of PO-P6.
- Fig. S13 TGA curves of PO-P6.
- Fig. S14 DSC thermograms of PO-P6.

Fig. S15 Contact angle images for droplets of water on P0-P6 surfaces.

Fig. S16 ¹H NMR spectra of PO with NaOD (3 equiv.) monitored during the degradation process in

DMSO-*d*₆:D₂O = 20:1 at 37 °C.

Fig. S17 ¹H NMR spectra of P1 with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S18 ¹H NMR spectra of P2 with NaOD (3 equiv.) monitored during the degradation process in

DMSO-*d*₆:D₂O = 20:1 at 37 °C.

Fig. S19 ¹H NMR spectra of **P3** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S20 ¹H NMR spectra of **P4** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S21 ¹H NMR spectra of P5 with NaOD (3 equiv.) monitored during the degradation process in

DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S22 ¹H NMR spectra of PO with TBD (5 equiv.) monitored during the degradation process in

DMSO- d_6 :CD₃OD = 7:1 at 37 °C.

Fig. S23 ¹H NMR spectra of P5 with TBD (5 equiv.) monitored during the degradation process in

DMSO- d_6 :CD₃OD = 7:1 at 37 °C.

Fig. S1 ¹H NMR spectrum of **P6** in TFEA/CDCl₃ = 4/1.

Fig. S2 ¹³C NMR spectrum of **P6** in TFEA/CDCl₃ = 4/1.

Fig. S3 ¹H NMR spectrum of monomer 2 in CDCl₃.

Fig. S4 ¹³C NMR spectrum of monomer 2 in CDCl₃.

Fig. S5 Kinetic analysis for the synthesis of P0 in $CDCl_3$ based on ¹H NMR spectra. Proton signals corresponding to end groups and cyclic oligomers are designated.

Fig. S6 Kinetic analysis for the synthesis of P5 in DMSO-d₆ based on ¹H NMR spectra. Proton

signals corresponding to end groups and cyclic oligomers are designated.

Fig. S7 ESI-MS spectrum of P0 supernatant.

Fig. S8 ESI-MS spectrum of P5 supernatant.

Fig. S9 ¹³C NMR spectra of **P0-P5** in DMSO- d_6 (characteristic peaks shown only).

Fig. S10 GPC traces of PO-P3.

Fig. S11 GPC traces of kinetic analysis for the synthesis of P0.

Fig. S12 IR spectra of PO-P6.

Fig. S13 TGA curves of PO-P6.

Fig. S14 DSC thermograms of PO-P6.

Fig. S15 Contact angle images for droplets of water on P0-P6 surfaces.

Fig. S16 ¹H NMR spectra of **P0** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S17 ¹H NMR spectra of **P1** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S18 ¹H NMR spectra of **P2** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S19 ¹H NMR spectra of **P3** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S20 ¹H NMR spectra of **P4** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S21 ¹H NMR spectra of **P5** with NaOD (3 equiv.) monitored during the degradation process in DMSO- d_6 :D₂O = 20:1 at 37 °C.

Fig. S22 ¹H NMR spectra of **P0** with TBD (5 equiv.) monitored during the degradation process in DMSO- d_6 :CD₃OD = 7:1 at 37 °C.

Fig. S23 ¹H NMR spectra of **P5** with TBD (5 equiv.) monitored during the degradation process in DMSO- d_6 :CD₃OD = 7:1 at 37 °C.