Electronic Supplementary Information

Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers

Stephanie M. Barbon,^{‡a} Nghia P. Truong,^{‡b} Alysha G. Elliott,^c Matthew A. Cooper,^c Thomas Davis,^b Michael R. Whittaker, ^{*b} Craig J. Hawker, ^{*a} Athina Anastasaki^{*a}

^aMaterials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106 (USA). ^bMonash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Melbourne, Victoria 3052, Australia. ^cInstitute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.

Polymer	M _n (g/mol) ^a	Ð
1 a	2600	1.09
1b	2450	1.13
2a	2650	1.15
2b	2630	1.09
3 a	2370	1.10
3b	2630	1.11
4 a	2460	1.10
4b	2750	1.07
5b	3340	1.09
6b	3290	1.09
7b	3990	1.08
8b	1910	1.13
9b	1700	1.11

 Table S1. Polymer characterization data

^{*a*}Measured relative to polystyrene standards.

Polymer	S.	Е.	К.	А.	Р.	HEK293 ^b
	aureus ^a	coli ^a	pneumoniae ^a	baumanni ^a	aeruginosa ^a	
Gram +ve/–ve	+	—	_	_	—	
1a: C_2 -MA ₁₂ - <i>b</i> -Amine ₆	>197	>197	>197	>197	>197	>98
2a: C_2 -Amine ₆ - <i>b</i> -MA ₁₂	>193	97	193	97	193	>97
3a: C ₂ -MA ₆ -b- Amine ₆ -b-MA ₆	>216	108	216	108	54	>108
4a: C_2 -Amine ₃ - <i>b</i> -MA ₁₂ - <i>b</i> -Amine ₃	>208	52	104	26	104	>104
1b: C_{12} -MA ₁₂ - <i>b</i> -Amine ₆	>209	52	>209	52	104	>104
2b: C_{12} -Amine ₆ - <i>b</i> -MA ₁₂	97	12	24	12	49	29-45
3b: C ₁₂ -MA ₆ - <i>b</i> -Amine ₆ - <i>b</i> -MA ₆	195	24	195	49	97	63-97
4b: C_{12} -Amine ₃ - <i>b</i> -MA ₁₂ - <i>b</i> -Amine ₃	93	3	23	3	23	10-18
5b: C_{12} -Amine ₁ - <i>b</i> -MA ₁₂ - <i>b</i> -Amine ₁	>153	38-77	77-153	38-77	>153	33-75
6b: C ₁₂ -Amine ₂ - <i>b</i> -MA ₁₂ - <i>b</i> -Amine ₂	>156	19	39	19-39	78-156	17-38
7b: C_{12} -Amine ₆ - <i>b</i> -MA ₁₂ - <i>b</i> -Amine ₆	64	16	16	16	16	24-30
8b: C_{12} -Amine ₃ - <i>b</i> -MA ₆ - <i>b</i> -Amine ₃	8	8-4	17-8	8-4	8	46-103
9b: C_{12} -Amine ₃ - <i>b</i> -MA ₂ - <i>b</i> -Amine ₂	9	9	38-19	19-9	19-9	83-135

 Table S2. Antimicrobial results for polymers 1a–4a and 1b–9b in mmol/ml.

^aMinimum inhibitory concentration listed in mmol/mL. ^bCC₅₀ listed in mmol/mL

Figure S1. ¹H NMR spectrum of **1a** [EBiB-MA₁₂Am₆] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S2. ¹H NMR spectrum of **2a** [EBiB-Am₆MA₁₂] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

conversion throughout all monomer additions.

Figure S4. ¹H NMR spectrum of **4a** [EBiB-Am₃MA₁₂Am₃] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S5. ¹H NMR spectrum of **1b** [DBiB-MA₁₂Am₆] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S6. ¹H NMR spectrum of **2b** [DBiB-Am₆MA₁₂] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S7. ¹H NMR spectrum of **3b** [DBiB-MA₆Am₆MA₆] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S8. ¹H NMR spectrum of **4b** [DBiB-Am₃MA₁₂Am₃] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S9. ¹H NMR spectrum of **5b** [DBiB-Am₁MA₁₂Am₁] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S10. ¹H NMR spectrum of **6b** [DBiB-Am₂MA₁₂Am₂] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S11. ¹H NMR spectrum of **7b** [DBiB-Am₆MA₁₂Am₆] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S12. ¹H NMR spectrum of **8b** [DBiB-Am₃MA₃Am₃] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S13. ¹H NMR spectrum of **9b** [DBiB-Am₃MA₆Am₃] block 1 in CDCl₃ showing high conversion throughout all monomer additions.

Figure S14. SEC traces of 1a [EBiB-MA₁₂Am₆] block 1 (red) and block 2 (black).

Figure S15. SEC traces of 2a [EBiB-Am₆MA₁₂] block 1 (red) and block 2 (black).

Figure S16. SEC traces of 3a [EBiB-MA₆Am₆MA₆] block 1 (red), block 2 (blue) and block 3 (black).

Figure S17. SEC traces of 4a [EBiB-Am₃MA₁₂Am₃] block 1 (red), block 2 (blue) and block 3 (black).

Figure S18. SEC traces of 1b [DBiB-MA₁₂Am₆] block 1 (red) and block 2 (black).

Figure S19. SEC traces of 2b [DBiB-Am₆MA₁₂] block 1 (red) and block 2 (black).

Figure S20. SEC traces of 3b [DBiB-MA₆Am₆MA₆] block 1 (red), block 2 (blue) and block 3 (black).

Figure S21. SEC traces of **4b** [DBiB-Am₃MA₁₂Am₃] block 1 (red), block 2 (blue) and block 3 (black).

Figure S22. SEC traces of **5b** [DBiB-Am₁MA₁₂Am₁] block 1 (red), block 2 (blue) and block 3 (black).

Figure S23. SEC traces of **6b** [DBiB-Am₂MA₁₂Am₂] block 1 (red), block 2 (blue) and block 3 (black).

Figure S24. SEC traces of 7b [DBiB-Am₆MA₁₂Am₆] block 1 (red), block 2 (blue) and block 3 (black).

Figure S25. SEC traces of 8b [DBiB-Am₃MA₃Am₃] block 1 (red), block 2 (blue) and block 3 (black).

Figure S26. SEC traces of **9b** [DBiB-Am₃MA₆Am₃] block 1 (red), block 2 (blue) and block 3 (black).

Figure S27. ¹H NMR of P(PEGA-*co*-HEAA)-SC(=S)SC₂H₅ (published in Polym. Chem., 2015, 6, 3865–3874) (top red) and polymer **1b** (DBiB-MA₁₂Am₆) reported in this work (bottom blue), indicating no transamination has occured.