A Facile Approach to Thermomechanically Enhanced Fatty Acid-Containing Bioplastics Using Metal-Ligand Coordination

Meghan E. Lamm[†], Lingzhi Song[†], Zhongkai Wang[†], Benjamin Lamm[†], Lin Fu[†], and Chuanbing Tang^{*†}

[†]Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, United States

⁺Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, Anhui 230036, China

SUPPLEMENTARY INFORMATION

Scheme S1. Synthesis of SBMA monomer starting from soybean oil.

Figure S1. ¹H NMR spectrum of SBMA monomer.

Figure S2. ¹H NMR spectra of soybean oil based copolymers.

Figure S3. Photographs of (left) CEA5Cu and (right) CEA5Zn.

Table S1. Glass transition temperature (T_g) of copolymers and metal-coordinated polymers.

Sample code	Copolymer <i>T_g</i> (°C)	Copper Coordination <i>T_g</i> (°C)	Zinc Coordination <i>T_g</i> (°C)
CEA5	-5	39	40
CEA10	-3	52	56
CEA20	-1	66	69

Figure S4. TGA curves of copolymers and metal-coordinated polymers.

Figure S5. Tensile curves of all metal-coordinated copolymers at different metal-to-acid ratios. Using zinc salt for coordination with (a) **CEA5**, (b) **CEA10**, (c) **CEA20**. And using copper salt for coordination with (d) **CEA5**, (e) **CEA10**, (f) **CEA20**.

Figure S6. Storage modulus curves of all (a) copper-coordinated copolymers and (b) zinccoordinated copolymers.

Polymer	Metal	Storage Modulus at 25 °C (Pa)	Storage Modulus Plateau Temperature (°C)
Dć	Copper	3.49E7	80
ru	Zinc	5.08E7	
D7	Copper	2.07E8	100
F /	Zinc	1.61E8	
DQ	Copper	2.02E8	120
rð	Zinc	3.21E8	100

 Table S2. Storage modulus data for all copper-coordinated copolymers.

Figure S7. Loss modulus curves of (a) all copper-coordinated copolymers and (b) all zinccoordinated copolymers.

Figure S8. Tangent delta curves of (a) all copper- and zinc-coordinated copolymers.

Table S3. Dissolution studies using various solvents for CEA20Cu and CEA20Zn films.

Solvent	CEA20Cu	CEA20Zn
THF	Yes	Yes
Toluene	Yes (heated)	Yes
DMF	Yes (heated)	Yes (heated)
Water	No	No
Chloroform	No	Yes
Dichloromethane	No	Yes

Figure S9. Stress relaxation time (τ) vs. 1/T for (a) CEA20Cu and (b) CEA20Zn. Follows an Arrhenius law:

Arrhenius law:
$$\frac{1}{\tau} = \frac{1}{\tau_o} e^{-\frac{E_a}{RT}}$$

Where τ_o is constant (s), E_a is activation energy (J/mol), R is the ideal gas constant (8.314472 J/mol*K), and T is temperature (K). Activation energy is determined from the slope E_a/R .¹ For copper this is 52.7 kJ/mol, while for zinc this is 26.8 kJ/mol.

Figure S10. Stress relaxation of zinc-coordinated polymers at 75 °C.

Figure S11. Optical microscopy images of copolymer films of CEA20Cu: (left) as-cut film; (right) self-healed film.

Figure S12. Dual (stress- and temperature-) programmed shape memory testing of (a) CEA5Cu,(b) CEA10Cu, (c) CEA20Cu, and (d) CEA20Zn.

Figure S13. Time-dependent thermo-responsive shape memory testing of CEA20Cu.

Figure S14. WAXS profiles of metal-ligand coordinated copolymers: CEA20Cu and CEA20Zn

at 25 °C.

Figure S15. UV-VIS spectra of copolymer CEA20Cu being titrated with metal salt.

References

 Zhao, S.; Abu-Omar, M. M. Recyclable and Malleable Epoxy Thermoset Bearing Aromatic Imine Bonds. *Macromolecules* 2018, 51, 9816-9824.