Supporting Information

Two-stage thiol-based click reactions for the preparation and

adhesion of hydrogels

Wen Jing Yang,^a Wenya Xu,^a Xi Tao,^a Wen Wang,^a Yaqin Hu,^a Xue Li,^b En-Tang Kang,^c and Lianhui Wang^{*a}

^a Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China

^b Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, China

^c Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, 119260, Singapore

Figure S1 ¹H NMR spectrum of *N*-(3, 4-dihydroxyphenethyl) methacrylamide (DMA) in DMSO-d₆.

Figure S2 The FT-IR spectra for the copolymer (A) poly(DMA-co-PEGMA) (polyDP) and (B) poly(PMA-co-PEGMA) (polyPP)

Figure S3 The self-adhesion performances for HG-3 (prepared by poly(DMA-*co*-PEGMA) and 4-arm thiol-PEG) under UV irradiation for 20 minutes and HG-4 (prepared by poly(PMA-*co*-PEGMA) and 4-arm thiol-PEG) with addition of NaIO₄ ([NaIO₄]: 5.25 mg/mL, 25 µL~50 µL)

Figure S4 The stress-strain curves of the original and self-adhered hydrogels. (A) HG-1 hydrogel, (B) HG-2 hydrogel

Table S1 The gelation pictures for 4-arm PEG-SH added with NaIO₄ aqueous solution and NaIO₄ in poly(PDP) solution

^a: 25 μ L of NaIO₄ was added.

^b: The final concentration of NaIO₄ was 0.046 wt% in the pre-solution for hydrogel preparation.