Supplementary Information

Cyanuric Chloride as Potent Catalyst for The Reduction of Curing Temperature of Benzoxazines

Buket Akkus¹, Baris Kiskan^{1,*}, Yusuf Yagci^{1,*}

¹Istanbul Technical University, Science and Literature Faculty, Department of Chemistry, 34469, Maslak, Istanbul, Turkey.

Figure S1: ¹H NMR spectrum of P-a monomer. Solvent: CDCl₃ with Si(CH₃)₄.

Figure S2: ¹H NMR spectrum of P-Bn monomer. Solvent: CDCl₃ with Si(CH₃)₄.

Figure S3: ¹H NMR spectrum of B-a monomer. Solvent: CDCl₃ with Si(CH₃)₄.

Figure S4: The DSC thermograms of P-a monomer (a), P-a/TCT_{3%} (b) and (c). 1: The sample was left at 30 °C for 90 min. and 50 °C for 15 min. before analysis. 2: The sample was heated to 130 °C prior to DSC analysis. All the DSC analysis was performed between 30 and 320 °C by a heating rate of 10 °C/min under N₂ gas .

Figure S5: DSC thermogram of TCT/Water_{5%} (w/w) mixture.

Figure S6: TGA thermograms of cured B-a, B-a/TCT_{3%}, P-a and P-a/TCT_{3%}

Figure S7: Derivative TGA of TCT (a'), cured P-Bn/TCT_{3%} (b') and cured P-Bn (c').