Supporting Information

Iodine-Mediated PhotoATRP in Aqueous Media with Oxygen Tolerance

Sajjad Dadashi-Silab,^a Grzegorz Szczepaniak,^{a,b} Sushil Lathwal^a and Krzysztof Matyjaszewski^{a*} ^aDepartment of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States ^bFaculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland *Email: km3b@andrew.cmu.edu

EXPERIMENTAL

Materials

Poly(ethylene glycol) methyl ether methacrylate (M_n 300, PEGMA₃₀₀, Sigma-Aldrich) was passed through a column of basic alumina to remove inhibitor. Ethyl α -bromophenylacetate (EBPA, 97 % Sigma-Aldrich), tetrabutylammonium iodide (TBAI, Fisher Chemical), potassium iodide (KI, Fisher Chemical), sodium iodide (NaI, Sigma-Aldrich), and lithium iodide (LiI, Sigma-Aldrich) were used as received.

Instrumentation

¹H nuclear magnetic resonance (¹H NMR) measurements were performed on a Bruker AvanceTM III 500 MHz spectrometer. Molecular weight properties of the polymers were determined by size-exclusion chromatography (SEC). The SEC instrument was equipped with a Waters 515 pump and Waters 410 differential refractometer. SEC measurements were performed using PSS columns (Styrogel 10⁵, 10³, 10² Å) with DMF as an eluent at the flow rate of 1 mL/min. Linear poly(methyl methacrylate) standards were used for calibration. Polymerizations were irradiated under blue ($\lambda_{max} = 465$ nm, 12 mW/cm²), green ($\lambda_{max} = 520$ nm, 4.5 mW/cm²), and yellow ($\lambda_{max} = 595$ nm, 0.6 mW/cm²) light LEDs purchased from aspectLED.

General procedure for iodine-mediated photoATRP

Into a 2-dram vial equipped with a stir bar was added TBAI (103.4 mg, 0.28 mmol, 4 equiv.) The vial was sealed with a septum rubber and was subjected to vacuum and back filling with nitrogen for three times. PEGMA₃₀₀ monomer (1 mL, 3.5 mmol, 50 equiv.) and water (3 mL, 75 vol %) degassed with nitrogen in separate containers for 30 min were added to the vial under nitrogen atmosphere. EBPA (12.2 μ L, 70 μ mol, 1 equiv.) was added into the solution and the vial was irradiated under blue LEDs to start the polymerization. Samples were taken and analyzed by NMR and SEC techniques.

Supporting polymerization results:

Polymerizations using TBAI:

Figure S1. Iodine-mediated photoATRP in aqueous media. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[TBAI] = 50/1/4$ in 50 vol % water. Irradiated under blue LEDs ($\lambda_{max} = 460$ nm, 12 mW/cm²). (A) Kinetics of the polymerization. (B) Numberaverage molecular weight (M_n , solid points) and dispersity (\mathcal{D} , open points) as a function of monomer conversion. (C) SEC traces.

Figure S2. Iodine-mediated photoATRP in aqueous media. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[TBAI] = 50/1/4$ in 67 vol % water. Irradiated under blue LEDs ($\lambda_{max} = 460$ nm, 12 mW/cm²). (A) Kinetics of the polymerization. (B) Numberaverage molecular weight (M_n , solid points) and dispersity (D, open points) as a function of monomer conversion. (C) SEC traces.

Figure S3. Iodine-mediated photoATRP in aqueous media. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[TBAI] = 50/1/4$ in 75 vol % water. Irradiated under blue $LEDs (\lambda_{max} = 460 \text{ nm}, 12 \text{ mW/cm}^2).$ (A) Kinetics of the polymerization. (B) Numberaverage molecular weight (M_n , solid points) and dispersity (D, open points) as a function of monomer conversion. (C) SEC traces.

Polymerizations using KI:

Figure S4. Iodine-mediated photoATRP in aqueous media. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[KI] = 100/1/4$ in 50 vol % water. Irradiated under blue LEDs $(\lambda_{max} = 460 \text{ nm}, 12 \text{ mW/cm}^2)$. (A) Kinetics of the polymerization. (B) Numberaverage molecular weight (M_n , solid points) and dispersity (D, open points) as a function of monomer conversion. (C) SEC traces.

Figure S5. Iodine-mediated photoATRP in aqueous media. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[KI] = 50/1/4$ in 50 vol % water. Irradiated under blue LEDs $(\lambda_{max} = 460 \text{ nm}, 12 \text{ mW/cm}^2)$. (A) Kinetics of the polymerization. (B) Numberaverage molecular weight (M_n , solid points) and dispersity (D, open points) as a function of monomer conversion. (C) SEC traces.

Figure S6. Results of iodine-mediated photoATRP of PEGMA₃₀₀ monomer in the presence of (A) sodium iodide (NaI) and (B) lithium iodide (LiI) salts. Reaction conditions: $[PEGMA_{300}]/[EBPA]/[I^-] = 100/1/4 \text{ in 75 vol \% water. Irradiated under blue LEDs}$ $(\lambda_{max} = 460 \text{ nm}, 12 \text{ mW/cm}^2) \text{ for 2 h.}$