Electronic Supporting Information

Preparation of hyperbranched polymers by oxa-Michael addition

polymerization

Qimin Jiang^a, YuanLiang Zhang^a, Yongzhuang Du^a, Maotong Tang^a, Li Jiang^a, Wenyan Huang^a, Hongjun Yang^a, Xiaoqiang Xue^a, Bibiao Jiang^{a,b*}

^a Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China ^b Changzhou University Huaide College, Jingjiang 214500, China

Scheme S1 Preparation of linear reference polymer via Michael addition polymerization of 2-methyl-1,3-propanediol (MPO) and 1,6-hexanediol diacrylate (HDDA).

Figure S1 ¹H NMR spectrum of purified linear reference polymer obtained from *t*-BuP₂-catalyzed oxa-Michael addition polymerization of MPO and HDDA at 25 °C (in CDCl₃, 500 MHz).

Figure S2 ¹³C NMR spectrum of purified linear polymer prepared from *t*-BuP₂-catalyzed oxa-Michael addition polymerization of MPO and HDDA at 25 °C (in CDCl₃, 500 MHz).

Figure S3 ¹H NMR spectrum of the purified hyperbranched polymers obtained from *t*-BuP₂-catalyzed oxa-Michael addition polymerization of TME and HDDA in DMF at 25 °C (in CDCl₃, 500 MHz).

Figure S4 SEC curves of acrylic double bond terminated hyperbranched polymers before and after purification.

Scheme S2 The synthesis route of post-functionalized hyperbranched polymers via Michael addition reaction.

Figure S5 FTIR spectra of acrylic double bond terminated hyperbranched polymers before (A) and after (B) modification with mPEG-SH.

Figure S6 Cytotoxicity of the post-functionalized hyperbranched polymers in HepG2 cells.

Equation S1.

The ¹H NMR spectrum was used to calculate the transesterification of degree (DT) of branched (Figure 2A)

polymers via the following equations:

Without transesterification reaction= S_d ,

With transesterification reaction $=S_{d'}$,

 $DT(\%)=S_{d'}/(S_d+S_{d'}) \times 100\%.$

 $S_{d^{\prime}} \, and \, S_{d}$ represent the peak areas of the related signals.

Equation S2.

The ¹H NMR spectrum was used to calculate the degree of branching (DB) of polymers via the following

equations:

(1) Without purified hyperbranched polymers:

Linear units(L)= $S_f/2$

Terminal units(T)= $(S_{d''}/2) \times Conv._{double bonds}$

Dendritic units (D)=T

 $DB = (D+T)/(D+T+L) = (S_{d''} \times Conv._{double \ bonds})/(S_{d''} \times Conv._{double \ bonds} + S_{f'}/2)$

 $S_{d''}$ and S_{f} represent the peak areas of the related signals (Figure 2A).

(2) Purified hyperbranched polymers:

Linear units(L)= $S_f/2$

Terminal units(T)= $S_{d''}/2$

Dendritic units (D)=T

 $DB=(D+T)/(D+T+L)=S_{d''}/(S_{d''}+S_f/2)$

 $S_{\,d^{\prime\prime}}$ and S_{f} represent the peak areas of the related signals (Figure 2A).