Synthesis and properties investigation of hydroxyl functionalized polyisoprene prepared by cobalt catalyzed co-polymerization of isoprene and hydroxylmyrcene

Yuechao Xu^a, Junyi Zhao^{a,b,c}, Qiao Gan^a, Weilun Ying^a, Zhonghan Hu^a, Fuming Tang^a, Wanwei Luo^a, Yunjie Luo^a, Zhongbao Jian,^d Dirong Gong^{a,d*}

^c Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, Zhejiang 315830, PR China

^d State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

*Corresponding author. Email: <u>Gongdirong@nbu.edu.cn</u>

^a State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.

^b Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, PR China

Supporting Information Content List

Figure 1S The ¹H NMR spectrum of ligand Figure 2S The ¹³C NMR spectrum of ligand Figure 3S The ³¹P NMR spectrum of ligand Figure 4S The ¹H NMR spectra of the Co1 complex Figure 5S The mass spectrum of the Co1 complex Figure 6S The ¹H NMR spectra of Poly(IP-co-My-OH)s (a): run 1, table 1, (b) run 6, table 1, (c) run 8, table 1 and (d) run 7, table 1 **Figure 7S** The ¹H NMR spectra of (a) polyisoprene, (b) poly(isoprene_{95,6}-co-My- $OH_{4,4}$), (c) poly(isoprene_{91.4}-co-My-OH_{8.6}), (d) poly(isoprene_{83.7}-co-My-OH_{16.3}) (e) $poly(isoprene_{73,0}-co-My-OH_{27,0})$ and (f) $poly(isoprene_{68,5}-co-My-OH_{31,5})$ Figure 8S The ¹³C NMR spectra of (a) polyisoprene, (b) poly(isoprene_{95.6}-co-My- $OH_{4,4}$, (c) poly(isoprene_{91,4}-co-My-OH_{8,6}), (d) poly(isoprene_{83,7}-co-My-OH_{16,3}) (e) poly(isoprene_{73.0}-co-My-OH_{27.0}) and (f) poly(isoprene_{68.5}-co-My-OH_{31.5})Figure 9S AFM topology of poly(IP-co-My-OH)s: (a) polyisoprene, (b) poly(isoprene_{95.6}-co-My-OH_{4.4}), (c) poly(isoprene_{91.4}-co-My-OH_{8.6}), (d) poly(isoprene_{83.7}-co-My-OH_{16.3}).

(e) poly(isoprene_{73.0}-co-My-OH_{27.0}) and (f) poly(isoprene_{68.5}-co-My-OH_{31.5})

Figure 10S The vulcanization profiles of SiO_2 reinforced SiO_2 /PIP composites and SiO_2 /poly(IP-co-My-OH)s composites

Figure 11S The loss storage of SiO_2 reinforced SiO_2 /PIP composites and SiO_2 / poly(IP-co-My-OH)s composites

Table 1S The crystal data and structure refinements of complex Co1·CH₃OH

Table 2S The summarized properties of SiO_2 reinforced SiO_2/PIP composites and $SiO_2/poly(IP-co-My-OH)s$ composites

Figure 2S The ¹³C NMR spectrum of ligand L1

Figure 4S The ¹H NMR spectrum of the Co1 complex

Figure 5S The mass spectra of the Co1 complex

Figure 6S The 1 H NMR spectra of Poly(IP-co-My-OH)s (a): run 1, table 1, (b) run 6, table 1, (c) run 8, table 1 and (d) run 7, table 1

Figure 7S The ¹H NMR spectra of (a) polyisoprene, (b) poly(isoprene_{95.6}-co-My-OH_{4.4}), (c) poly(isoprene_{91.4}-co-My-OH_{8.6}), (d) poly(isoprene_{83.7}-co-My-OH_{16.3}), (e) poly(isoprene_{73.0}-co-My-OH_{27.0}) and (f) poly(isoprene_{68.5}-co-My-OH_{31.5})

Figure 8S The ¹³C NMR spectra of (a) polyisoprene, (b) poly(isoprene_{95.6}-co-My-OH_{4.4}), (c) poly(isoprene_{91.4}-co-My-OH_{8.6}), (d) poly(isoprene_{83.7}-co-My-OH_{16.3}), (e) poly(isoprene_{73.0}-co-My-OH_{27.0}) and (f) poly(isoprene_{68.5}-co-My-OH_{31.5})

poly(IP-co-My-OH)s: (a) Figure 9S AFM topology of polyisoprene, (b) (c) poly(isoprene_{91.4}-co-My-OH_{8.6}), (d) poly(isoprene_{95.6}-co-My-OH_{4.4}), poly(isoprene_{83.7}-co-My-OH_{16.3}), (e) poly(isoprene_{73.0}-co-My-OH_{27.0}) (f) and poly(isoprene_{68.5}-co-My-OH_{31.5})

Figure 10S The vulcanization profiles of SiO_2 reinforced SiO_2 /PIP composites and SiO_2 /poly(IP-co-My-OH)s composites

Figure 11S The loss storage of SiO_2 reinforced SiO_2 /PIP composites and SiO_2 /poly(IP-co-My-OH)s composites

	Co1·MeOH			
Formula	$C_{17}H_{30}CI_2CoN_3O_2$			
	Р			
Molecular Weight	485.24			
Crystal system	monoclinic			
Space group	P 121/c1			
a(Å)	16.5582(3)			
b(Å)	8.70090(10)			
c(Å)	16.7290(3)			
α(deg)	90.00			
β(deg)	111.858(2)			
γ(deg)	90.00			
V(Å ³)	2236.90(7)			
D _{calcd} (Mg/m ³)	1.441			
Absorp coeff (mm ⁻	9 073			
¹)	5.075			
F(000)	1012.0			
Crystal size(mm)	0.14x0.20x0.33			
θ Range (deg)	2.875 to 74.093			
No. Of reflns	11707			
collected	(R _{int} = 0.0328)			
No. of indep reflns	4399			
No. of data/	4399/3/254			
restraint/params				
GOF on F_2	1.058			
R ₁ (I>2sigma(I))	0.0354			
wR ₂	0.0881			

Table 1S Crystal Data and Structure Refinements of Complex $\textbf{Co1}\textbf{\cdot}\textbf{CH}_3\textbf{OH}$

Parameter	PIP	PIP	PIP	PIP-MY-	PIP-MY-	PIP-MY-
	SiO ₂	SiO ₂	SiO ₂	OH SiO ₂	OH SiO ₂	OH SiO ₂
	10%	20%	30%	10%	20%	30%
Optimum cure	920	1015	1033	729	708	703
time, Tc90,(s)						
Scorch time,	433	473	464	515	407	397
Tc10, (s)						
Minimum	0.18	1.23	2.12	0.26	1.51	3.05
torque, ML,						
(dNm)						
Maximum	10.55	14.82	16.33	11.35	15.88	17.48
torque, MH,						
(dNm)						
Cure Rate	0.19	0.17	0.17	0.41	0.31	0.30
Index(s ⁻¹)						

Table 2S The summarized properties of SiO₂ reinforced SiO₂/PIP composites and SiO₂/poly(IP-co-My-OH)s composites