Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Polydimethylsiloxane-based superhydrophobic membranes: fabrication,

durability, repairability, and application

Maolin Liu, Yuanfang Luo,* and Demin Jia

College of Materials Science and Engineering, South China University of Technology,

Guangzhou 510640, People's Republic of China

*Corresponding Author

E-mail: psyfluo@163.com

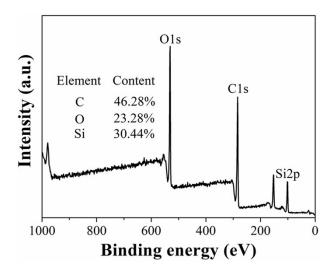


Fig. S1. XPS spectrum of the superhydrophobic membrane.

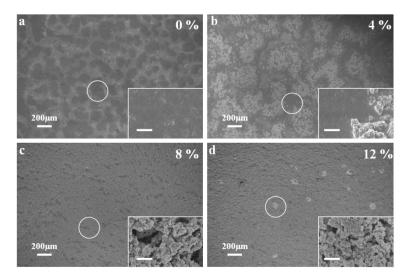
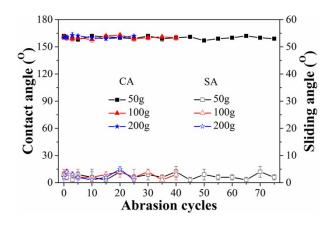
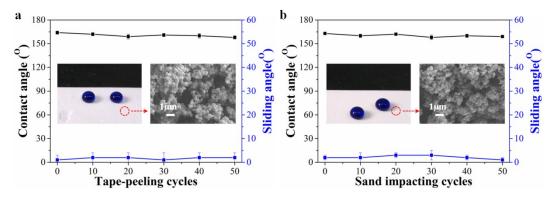




Fig. S2. SEM images of the fabricated membranes with different mass fractions of silica: (a) 0%, (b) 4%, (c) 8% and (d) 12%. Insets were high-magnification SEM images and the scale bars were $2\mu m$.

Fig. S3. CAs and SAs of the superhydrophobic membranes with different abrasion cycles (Black: 50 g; Red: 100 g; Blue: 200 g).

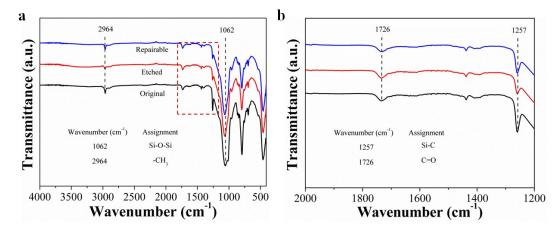
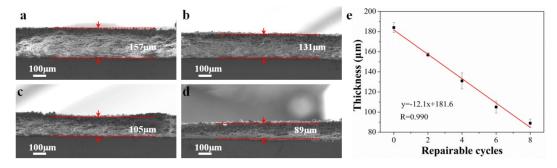


Fig. S4. CAs and SAs of the superhydrophobic membrane with (a) tape-peeling cycles and (b) sand impacting cycles. Insets were optical images and SEM images after tests.


Table S1. Elemental contents of the original, etched and repairable superhydrophobic

membranes

	C/%	O/%	Si/%	C/O
Original	46.28	23.28	30.44	1.99
Etched	45.98	28.85	25.17	1.59
Repairable	46.34	24.16	29.50	1.92

Fig. S5. ATR-FTIR spectra of the original, etched and repairable superhydrophobic membranes.

Fig. S6. Cross-sectional SEM images of the superhydrophobic membrane with different repairable cycles: (a) 2 cycles, (b) 4 cycles, (c) 6 cycles and (d) 8 cycles. (e) Thickness of the superhydrophobic membrane with repairable cycles.

Video S1. Water flow bouncing on the superhydrophobic membrane.

Video S2. Underwater pattern display of the superhydrophobic membranes.