Supporting information

Mechanically strong and tough hydrogels with pH-triggered self-

healing and shape memory property based on dual physically cross-

linked network

Tao Liu,^a Shaoshuang Zou,^b Chen Hang,^a Jian Li,^a Xiang Di,^a Xiaohui Li,^c Qiang Wu, ^a Fenfen Wang,^{a*} Pingchuan Sun^{*a,d}

^aKey Laboratory of Functional Polymer Materials of the Ministry of Education and College of Chemistry, Nankai University; Tianjin 300071, P. R. China

^bCollege of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China

^cSchool of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China.

^dState Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.

*Corresponding Authors:

Fenfen Wang, Email: wff@mail.nankai.edu.cn Pingchuan Sun, E-mail: spclbh@nankai.edu.cn

Characterization.

Solution NMR experiments were performed on a Bruker AVANCE III NMR spectrometer with a proton resonance frequency of 400.13 MHz. The samples were dissolved in deuterated chloroform or DMSO with a small amount of TMS as the internal reference standard. The fourier transform infrared (FTIR) spectra were recorded with a A225/Q Platinum ATR unit on a Bruker Tensor II spectrometer equipped with a RT-DLaTGS detector, at a scan speed of 1.6 kHz, 16 scans per sample and a resolution of 4 cm⁻¹. Ultraviolet spectra (UV, Shimadzu UV-2450 spectrophotometer).

Figure S1. ¹H NMR spectrum of UPy-MA in CDCl₃. "*" indicates the proton signals of chloroform (\Box_{iso} = 7.26 ppm) and TMS (\Box_{iso} = 0 ppm). ¹H NMR (400 MHz, CDCl₃, δ ppm): 1.94 (s, 3H, CH₃), 2.24 (s, 3H, ArCH₃), 3.56-3.60 (m, 2H, NHCH₂), 4.26-4.29 (t, 2H, OCH₂), 5.53-5.55 (m, 1H, C=CH₂), 5.78 (s, 1H, aromatic ring), 6.18(s, 1H, C=CH₂), 10.49 (s, 1H, NH), 11.96 (s, 1H, NH), 12.97 (s, 1H, NH).

Figure S2. (a) Typical stress-strain profiles, (b) water contents, (c) tensile strength and elongation, and (d) elastic modulus and toughness of the D-hydrogels prepared with different UPyMA monomer concentrations. AM concentration = 7 mol L⁻¹, AA 15mol% of AM, Fe³⁺ concentration = 0.06 mol L⁻¹.

Figure S3. (a) Typical stress-strain profiles, (b) water contents, (c) tensile strength and elongation, and (d) elastic modulus and toughness of the D-hydrogels prepared with different AA concentrations. AM concentration = 7 mol L^{-1} , UPyMA 1mol% of AM, Fe³⁺ concentration = 0.06 mol L^{-1} .

Figure S4. (a) Stress-strain profiles, (b) Elastic modulus and toughness and (c) water content of D-hydrogels at different Fe^{3+} concentrations. AM concentration = 7 mol L⁻¹, AA (15% molar ratio of AM), and UPyMA (1% molar ratio of AM).

Figure S5. Comparison of the healing mechanical properties between the D-hydrogel and the previously reported self-healing hydrogel with the assistance of external stimuli, including 1) heat, a₁ biphasic synergistic gel materials (BSGs)¹; a₂ poly(N - acryloyl glycinamide) (PNAGA) physical hydrogel²; a₃ polyvinyl alcohol- poly (3,4-ethylenedioxythio-phene) :polystyrene sulfonate (PVA-PEDOT:PSS) physical hydrogel³; a₄ poly(acrylic acid)- cetyltrimethylammonium (PAA-CTA) physical hydrogel⁴; 2) light irradiation, b1 poly(N-acryloyl 6-aminocaproic acid)- functionalized gold nanoparticles (PA6ACAfunctionalized AuNPs) physical hydrogel5; b2 graphene oxide (GO)-hectorite clay-poly(N,Ndimethylacrylamide) (PDMAA) physical hydrogel⁶; 3) pН triggering, sodium c_1 alginate/poly(acrylamide - co-acrylic acid)/Fe³⁺ (SA/P(AM-co-AA)/Fe³⁺) physical hydrogel⁷; c₂ poly(acrylamide-co-acrylic acid)/Fe³⁺ (P(AM-co-AA)/Fe³⁺)⁸; c₃ poly(acrylamide- co-acrylic acid-co-2-Vinyl-4,6-Diamino-2-vinyl-1,3,5-triazine)/Fe3+ ((PAM-co-AA- co-VDT)/Fe3+) physical hydrogel9; c4 P(AM-co-AA)/Na-Alginate/ Fe³⁺ physical Hydrogels¹⁰; c₅ PAM-co-AA-co-UPy-MA/ Fe³⁺ physical hydrogel in this work.

Figure S6. Stress–strain curves of the origin and healed D-hydrogel specimen A15-U0-Fe0.06 (the pristine PAM-AA/Fe³⁺ hydrogel without UPy-monomer).

Figure S7. EDS images elemental maps for freeze-dried A15-U1-Fe0.06 hydrogel. (a) Original sample, (b) alkaline treatment sample, and (c) healed sample.

Figure S8. AFM images of freeze-dried A15-U0-Fe0.06 (a) and A15-U1-Fe0.06 (b) with scale bars of 1 μ m.

Figure S9 Stress-strain curve of D-hydrogel treated in $0.06M \text{ Fe}(\text{NO}_3)_3$ solution for 5 hours and then soaked in deionized water for 24 hours.

Figure S10 SEM images of as-prepared S-hydrogel (a) and D-hydrogel (b)

Table S1 Atomic content of main elements of S-hydrogel (A15-U1-Fe0.06) obtained from EDS

Element	Atomic content (%)
С	64.04
Ν	4.94
О	24.30
Fe	6.72

References

- 1. Z. Zhao, Y. Liu, K. Zhang, S. Zhuo, R. Fang, J. Zhang, L. Jiang and M. Liu, *Angew. Chem., Int. Ed.,* 2017, **56**, 13464-13469.
- 2. X. Dai, Y. Zhang, L. Gao, T. Bai, W. Wang, Y. Cui and W. Liu, *Adv Mater*, 2015, **27**, 3566-3571.
- 3. Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou and M. Liu, *Angew. Chem., Int. Ed.,* 2017, **56**, 14159-14163.
- 4. U. Gulyuz and O. Okay, *Macromolecules*, 2014, **47**, 6889-6899.
- 5. H. Zhang, D. Han, Q. Yan, D. Fortin, H. Xia and Y. Zhao, *J. Mater. Chem. A*, 2014, **2**, 13373-13379.
- 6. E. Zhang, T. Wang, L. Zhao, W. Sun, X. Liu and Z. Tong, ACS Appl Mater Interfaces, 2014, 6, 22855-22861.
- X. Li, H. Wang, D. Li, S. Long, G. Zhang and Z. Wu, ACS Appl Mater Interfaces, 2018, 10, 31198-31207.
- 8. S. Y. Zheng, H. Ding, J. Qian, J. Yin, Z. L. Wu, Y. Song and Q. Zheng, *Macromolecules*, 2016, **49**, 9637-9646.
- 9. X. Li, R. Li, Z. Liu, X. Gao, S. Long and G. Zhang, *Macromol Rapid Commun*, 2018, **39**, 1800400.
- 10. Y. Liang, J. Xue, B. Du and J. Nie, ACS Appl Mater Interfaces, 2019, **11**, 5441-5454.