Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Multifunctional Tryptophan-Based Fluorescent Polymeric Probes for Sensing, Bioimaging and Removal of Cu²⁺ and Hg²⁺ Ions

Neha Choudhury,^{a,b} Bhuban Ruidas,^d Biswajit Saha,^{a,b} Kambalapalli Srikanth,^c Chitrangada Das Mukhopadhyay^d and Priyadarsi De^{a,b,c*}

^aPolymer Research Centre, ^bDepartment of Chemical Sciences, ^cCentre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.

^dCentre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah, West Bengal, 711103, India

* Corresponding Author: E-mail: p_de@iiserkol.ac.in

Figure S1. Change in the fluorescence intensity of CP3 (10⁻⁴ M) at different pH.

Figure S2. Color of **CP3** solution upon treatment with several interfering cations: 1 (Mg²⁺), 2 (As³⁺), 3 (Zn²⁺), 4 (Mn²⁺), 5 (Na⁺), 6 (Hg²⁺), 7 (Cu²⁺), 8 (K⁺), 9 (Cd²⁺), 10 (Ni²⁺), 11 (Ca²⁺), 12 (Co²⁺), 13 (Cr³⁺), 14 (Fe²⁺), 15 (Fe³⁺).

Figure S3. UV-vis titration of **CP3** with (A) Cu²⁺ (inset shows the enhancement of absorption at 370 nm upon addition of metal ion) and (B) Hg²⁺ions in water.

Figure S4. Bar diagram representation of fluorescence quenching of **CP3** upon treatment with several interfering anions.

Figure S5. Cyclic voltammogram of **CP3**, **CP3**•Cu²⁺ complex, and **CP3**•Hg²⁺ complex in H₂O containing 0.1 M KCl, using Pt disk as a working electrode, Pt wire as the counter electrode and Ag/AgNO₃ as the reference electrode, scan rate 100 mV/s.

Table S1. Fluorescence lifetime of CP3 with and without treatment with Cu^{2+/} Hg²⁺.^a

Compound	α_1	α2	$ au_1$	$ au_2$	$\langle \tau \rangle$ b
			(ns)	(ns)	(ns)
CP3	19.90	80.10	2.56	12.91	12.42
$CP3 + Cu^{2+}$	44.08	55.92	2.59	9.98	10.46
$CP3 + Hg^{2+}$	41.11	58.89	0.70	5.40	5.58

*^a*The data were fitted with a biexponential decay equation. *^b*The average lifetime was calculated using the following formula: $\langle \tau \rangle = \frac{\alpha_1 \tau_1^2 + \alpha_2 \tau_2^2}{\alpha_1 \tau_1 + \alpha_2 \tau_2}$

Figure S6. IR spectra of **CP3**, **CP3**•Cu²⁺ complex, and **CP3**•Hg²⁺ complex in methanol (A). Magnified view of the 1500-1800 cm⁻¹ region (B).

Figure S7. ¹H NMR spectra of HP1 in CDCl₃, HP2 and HP3 in D₂O.

Figure S8. SEC RI trace of HP1 in DMF as eluent.