Electronic Supplementary Information

An effective amino acid-assisted growth of ultrafine palladium nanocatalysts

toward superior synergistic catalysis for hydrogen generation from formic acid

Cheng-Bin Hong,^{a,b} De-Jie Zhu,^{a,b} Dong-Dong Ma,^a Xin-Tao Wu,^a and Qi-Long

Zhu^{a,*}

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China
^b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Author: <u>qlzhu@fjirsm.ac.cn</u>

Catalyst	Additive	Temp. (°C)	CO evolution	TOF (h ⁻¹)	Ref.
Arg-Pd/MSC-30	HCOONa	60	No	5723	This work
	None	50	No	1365	This work
Pd/MSC-30	HCOONa	50	No	2623	S1
Au/ZrO ₂ NCs	NEt ₃	50	No	1593 ^a	S2
Ag@Pd/C	Aqueous	20	No	192	S3
Pd-S-SiO ₂	Aqueous	85	No	719	S4
AuPd@ED-MIL-101	HCOONa	90	Yes	106	S5
PdAu/C-CeO ₂	HCOONa	92	145 ppm	113.5	S6
$Ag_{42}Pd_{58}$	Aqueous	50	No	328 ^a	S7
Pd-B/C	HCOONa	30	No	1184	S8
PdAu@Au/C	HCOONa	92	30 ppm	21.4	S9
Co _{0.30} Au _{0.35} Pd _{0.35}	Aqueous	25	No	80 ^a	S10
Pd/APC	HCOONa	55	No	2999	S11
Pd/N-MSC-30-two-175	HCOONa	60	No	8414	S12
Pd _{0.6} Ag _{0.4} @ZrO ₂ /C/rGO	HCOONa	60	No	4500	S13

Table S1. Catalytic activities for hydrogen generation from formic acid catalyzed by

 various heterogeneous catalysts

^a Initial TOF values calculated at the initial stages of the catalytic reactions.

Sample	Pd content (wt%)
Pd/MSC-30	7.92
Arg-Pd/MSC-30	3.81
Recycled Arg-Pd/MSC-30	3.75

Figure S1. N_2 sorption isotherms of (a) MSC-30, (b) Pd/MSC-30, and (c) Arg-Pd/MSC-30 at 77K.

Figure S2. Gas chromatograms of CO and H_2 as reference gases and the released gas from the dehydrogenation of FA over Arg-Pd/MSC-30 ($n_{Pd}/n_{FA} = 0.01$, FA/SF = 1:1, 323 K).

Figure S3. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of pure FA over the as-prepared (a) Arg-Pd/MSC-30 and (b) Pd/MSC-30 ($n_{Pd}/n_{FA} = 0.01$, 323 K, $n_{FA} = 9.0$ mmol). Insert: corresponding TOF values for dehydrogenation of pure FA over the Arg-Pd/MSC-30 and Pd/MSC-30 catalysts.

Figure S4. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA with different FA/SF molar ratios over the as-prepared Arg-Pd/MSC-30 catalyst ($n_{Pd}/n_{FA} = 0.01$, 323 K).

Figure S5. Volume of the generated gas $(CO_2 + H_2)$ versus time for the dehydrogenation of FA with over the as-prepared Arg-Pd/MSC-30 catalyst washed with different times after reduction $(n_{Pd}/n_{FA} = 0.01, 323 \text{ K})$.

Figure S6. Durability test for the dehydrogenation of FA over Arg-Pd/MSC-30 $(n_{Pd}/n_{FA} = 0.01, FA/SF = 1:1, 323 \text{ K}).$

Figure S7. PXRD patterns of Arg-Pd/MSC-30 (a) before and (b) after catalysis.

Figure S8. TEM image of Arg-Pd/MSC-30 after catalysis

References

- (S1) Zhu, Q.-L.; Tsumori, N.; Xu, Q. Chem. Sci., 2014, 5, 195-199.
- (S2) Bi, Q.-Y.; Du, X.-L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. J. Am. Chem. Soc., 2012, 134, 8926-8933.
- (S3) K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. Bagot, E. A. Marquis, G. D. Smith and S. C. E. Tsang, *Nat. Nanotech.*, **2011**, 6, 302-307.
- (S4) Zhao, Y.; Deng, L.; Tang, S.-Y.; Lai, D.-M.; Liao, B.; Fu, Y.; Guo, Q.-X., *Energy & Fuels*, **2011**, 25, 3693-3697.
- (S5) Gu, X.; Lu, Z.-H.; Jiang, H.-L.; T. Akita; Xu, Q. J. Am. Chem. Soc., 2011, 133, 11822-11825.
- (S6) Zhou, X.; Huang, Y.; Xing, W.; Liu, C.; Liao, J.; Lu, T. Chem. Commun., 2008, 30, 3540-3542.
- (S7) Zhang, S.; Metin, Ö.; Su, D.; Sun, S. Angew. Chem. Int. Ed., 2013, 52, 3681-3684.
- (S8) Jiang, K.; Xu, K.; Zou, S.; Cai, W.-B. J. Am. Chem. Soc., 2014, 136, 4861-4864.
- (S9) Huang, Y.; Zhou, X.; Yin, M.; Liu, C.; Xing, W. Chem. Mater., 2010, 22, 5122-5128.
- (S10) Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. *Angew. Chem. Int. Ed.*, **2013**, 52, 4406-4409.
- (S11) Zhu, D.-J.; Wen, Y.-H.; Xu, Q.; Zhu, Q.-L.; Wu, X.-T., *Eur. J. Inorg. Chem.*, **2017**, 40, 4808-4813.
- (S12) Li, Z.; Yang, X.; Tsumori, N.; Liu, Z.; Himeda, Y.; Autrey, T.; Xu, Q., ACS Catal., 2017, 7, 2720-2724.
- (S13) Song, F.-Z.; Zhu, Q.-L.; Yang, X.; Zhan, W.-W.; Pachfule, P.; Tsumori, N.; Xu,
 Q., Adv. Energy Mater., 2018, 8, 1701416.