Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

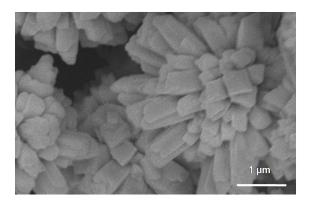
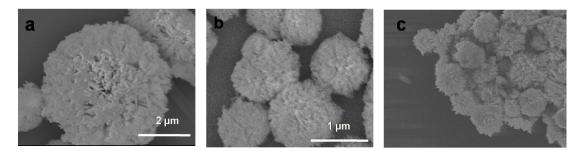
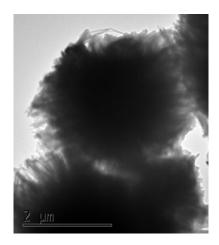
Supporting information for

Nitrogen-enriched carbon coating flower-like bismuth sulfide architectures towards high performance lithium ion battery anodes

Shuwen Wang, Wenda Li, Haochen Song, Changming Mao, Zhonghua Zhang, HongruiPeng* and Guicun Li*

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

E-mail: penghongrui@qust.edu.cn and guicunli@qust.edu.cn

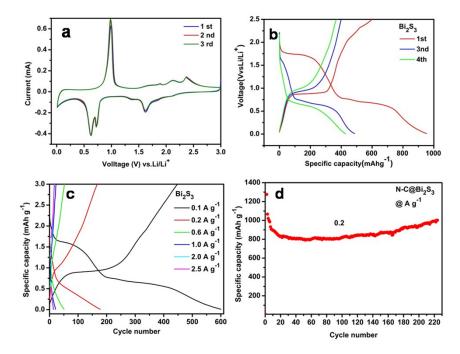

Figure S1 The SEM image of without PVP.

Figure S2 The SEM image of the poly-dopamine coated flower-like Bi_2S_3 structures (a and b); The SEM image offlower-likeN-C@ Bi_2S_3 structures (c).

 $\textbf{Figure S3} \ \ \text{The TEM image offlower-likeN-C@Bi}_2S_3 \ \ \text{structures}.$

Figure S4 Typical CV curve (a) of the N-C@Bi₂S₃ electrode at 0.2 mV s⁻¹; Galvanostatic charge-discharge profiles (b) of the Bi₂S₃electrodeat 0.1 Ag⁻¹; Galvanostatic charge-discharge profiles (c) of the Bi₂S₃electrodeat varied current densities; The long-term cycling performance (d) of N-C@Bi₂S₃ electrodes at 0.2 A g⁻¹.

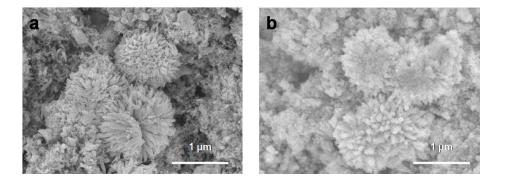
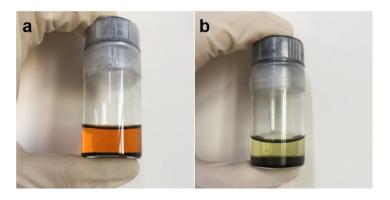
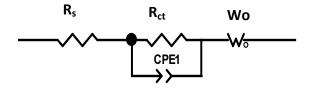



Figure S5 The SEM image of before (a) and after (b) cycling.

Figure S6 Digital photograph of the fresh $\text{Li}_2\text{S}_6/\text{N-C}@\text{Bi}_2\text{S}_3$ mixtures and the aged $\text{Li}_2\text{S}_6/\text{N-C}@\text{Bi}_2\text{S}_3$ mixtures (three days).

Table S1 The content of various C and N.

	N1	N2	N3	N4	С-С	C-N	С-О	C=O	O-C=O
Content	33.5	7	55.1	4.4	57	29.1	6.3	2.5	5.1
(%)									


Table S2 The performance comparisons between this work and previously reported works.

Catharlas	Daniel (A. arl)	C. d. m. mt. m	Capacity
Cathodes	Density (A g ⁻¹)	Cycle number	(mAh g ⁻¹)
Our work	1/0.2	950/224	617/1001.7
$Bi_2S_3@C^{39}$	0.1	100	765
$Bi_2S_3@CNW^{17}\\$	1	700	501
$Bi_2S_3@SC^5\\$	1	1000	550
$rGO@Bi_2S_3^{41}\\$	0.5	400	> 300
Bi_2S_3 - PPY^7	1.2	500	450
$Bi_2S_3@SiO_2{}^{36}$	1	4000	379
GVB^{40}	0.1	100	702
$Bi_2S_3@C^{16}$	0.6	40	301

Table S3 The electrochemical data from EIS analysis (R_s is solution resistance; R_{ct} is charge transfer resistance).

Electrode	R _s	R _{et}
N-C@Bi ₂ S ₃ before cycle	4.432	178.7
N-C@Bi ₂ S ₃ after cycle	4.319	713.5
Bi ₂ S ₃ before cycle	1.491	401
Bi ₂ S ₃ after cycle	11.32	1246

Equivalent circuit

