Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

TABLE OF CONTENTS

Table S1: Crystallographic data and refinements for complexes 1–4·····S2								
Table S2: Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 1 according to the generalized Debye model under 2 kOe dc field······S3								
Table S3: Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2 according to the generalized Debye model under 2 kOe dc field······S4						ots of 2 84		
Table S4: Ca	alculated low-l	ying spin-orbit e	energy levels b	ased on C.	ASSCF m	ethod		·····S5
Table S5 method	: Calculated	l low-lying	spin-orbit	energy	levels	based	on	DDCI3
Figure S1: V	Figure S1: Variable-field-variable-temperature magnetization measurement for 1-4 (a-d)							
Figure S2. 7	emperature de	pendence ac sus	ceptibility in t	he absence	e of dc fiel	d for 1 and	d 2 ·····	·····\$8
Figure S3 : Cole-Cole plots fitting for the determination of the temperature dependence of τ for 1 (a) and 2 (b) under 2 kOe dc field								
Figure S4. Temperature dependence ac susceptibility for 3······S10								
Figure 4	\$5 . 7	Temperature	dependen	ce	ac	susceptib	oility	for
Figure S6. (a) Field dependence of ac susceptibility for 1 at 4 K. (b) Field dependence of relaxation								
times τ . The solid lines represented the global fitting \cdots S12								
Figure S7 . (a) Field dependence of ac susceptibility for 2 at 3 K. (b) Field dependence of relaxation times τ . The solid lines represented the global fitting S13								
Figure S8 . (a) Field dependence of ac susceptibility for 2 at 5 K. (b) Field dependence of relaxation times τ . The solid lines represented the global fitting S14								

	1	2	3	4
formula	C74H90BFeN4O2	C78H88BFeN4O	C ₇₈ H ₇₂ BF ₂₄ FeN ₄	C86H80BF24FeN4
Mr	1134.15	1164.18	1588.05	1692.20
cryst syst	monoclinic	monoclinic	triclinic	monoclinic
space group	$P2_1$	$P2_{1}/c$	$P \overline{1}$	$P2_1$
<i>a</i> , Å	13.0956(15)	19.071(3)	12.520(2)	18.7708(15)
<i>b</i> , Å	18.1551(19)	16.663(2)	15.717(3)	16.9182(14)
<i>c</i> , Å	13.6087(15)	21.656(3)	19.186(3)	26.489(2)
α, deg	90	90	79.488(3)	90
β , deg	91.873(2)	106.455(3)	84.243(3)	106.1770(10)
γ, deg	90	90	89.168(3)	90
<i>V</i> , Å ³	3233.8(6)	6600.0(16)	3693.1(10)	8079.1(11)
Ζ	2	4	2	4
<i>Т</i> , К	130	130	130	130
μ , mm ⁻¹	0.281	0.276	0.312	0.290
λ, Å	0.71073	0.71073	0.71073	0.71073
Cryst size, mm ³	0.20 0.05 0.03	0.38 0.28 0.20	0.22 0.20 0.16	0.32 0.20 0.18
GOF	0.962	1.020	0.957	0.993
$R_{\rm int}$	0.0656	0.0827	0.0591	0.0516
$R_1, wR_2[I > 2\sigma(I)]$	0.0702, 0.1122	0.0589, 0.1124	0.0920, 0.2481	0.0719, 0.1751
R_1 , wR_2 [all data]	0.173, 0.1383	0.1317, 01404	0.1543, 0.2852	0.1761, 0.2275
CCDC code	1426589	1882118	1426588	1426587

 Table S1: Crystallographic data and refinement for complexes 1-4.

 $\chi_{\rm S}$ / cm³ mol⁻¹ K $\chi_{\rm T}$ / cm³ mol⁻¹ K τ/s T/Kα 1.2359 2 0.0214 0.1928 0.008842.25 0.02159 0.90554 0.14772 0.00338 2.5 0.02129 0.82909 0.12568 0.00191 2.75 0.02075 0.79103 0.1157 0.00119 3 0.01992 0.10794 0.000747 0.74734 3.25 0.02011 0.09133 0.000474 0.69197 3.5 0.02053 0.64204 0.07395 0.00311 0.06229 3.75 0.02104 0.6018 0.000212 0.02184 0.56517 0.05151 0.000148 4 0.0001067 4.25 0.53275 0.02284 0.042 0.00007848 4.5 0.02213 0.50605 0.04285 4.75 0.02174 0.4804 0.0408 0.0000585 0.03966 0.0000439 5 0.02055 0.45618 5.25 0.0169 0.43615 0.04654 0.0000334 0.01537 5.5 0.41605 0.04216 0.0000258 5.75 0.01424 0.0000202 0.39919 0.04266 6 0.0154 0.38268 0.03969 0.0000161

Table S2: Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 1 according to the generalized Debye model.

<i>T /</i> K	$\chi_{\rm S}$ / cm ³ mol ⁻¹ K	$\chi_{\rm T}$ / cm ³ mol ⁻¹ K	α	τ / s
3	0.01495	1.86093	0.18645	0.01553
3.25	0.01505	1.24621	0.13108	0.00485
3.5	0.01454	1.06609	0.1014	0.00239
3.75	0.01418	0.9626	0.07956	0.00137
4	0.01343	0.90131	0.07036	0.000855
4.25	0.01327	0.84131	0.05763	0.000553
4.5	0.01282	0.79205	0.05108	0.000376
4.75	0.01244	0.75242	0.04791	0.000266
5	0.01246	0.71373	0.04252	0.000192
5.25	0.01286	0.67946	0.03782	0.000142
5.5	0.01157	0.65017	0.04181	0.0001065
5.75	0.01293	0.62292	0.03655	0.0000821
6	0.00981	0.06195	0.05836	0.0000634
6.25	0.00498	0.57501	0.04345	0.0000503
6.5	0	0.55546	0.06065	0.0000393
6.75	0	0.53467	0.04551	0.0000326
7	0	0.51584	0.05233	0.0000262
7.25	0	0.49824	0.05482	0.0000214
7.5	0	0.48163	0.058	0.0000177
7.75	0	0.46603	0.05019	0.0000149
8	0	0.45185	0.05543	0.0000125

Table S3: Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of **2** according to the generalized Debye model under 2 kOe dc field.

 Table S4: Calculated low-lying spin-orbit energy levels based on CASSCF method.

	1	2	3	4	
	Calculated low-lying spin-orbit energy levels based on CASSCF method				
1	0	0	0	0	
2	119.475	226	103	132	
3	1055	581	732	260	
4	1189	815	935	496	
5	1601	1319	1251	634	
6	1721	1403	1369	762	
7	2353	2093	1601	848	
8	2510	2223	1782	1075	
Calculated zero-field splitting (ZFS) parameters: the axial D and rhombic E parameters of the ground					
manifold (pseudospin S=3/2)					
D	-58.7	-112.9	46.6	-65.3	
E	6.3	2.5	12.7	5.6	

	1	2	3	4	
	Calculated low-lying spin-orbit energy levels based on DDCI3 method				
1	0	0	0	0	
2	76.2	126	71	127	
3	1614	1066	1486	412	
4	1704	1198	1669	711	
5	2161	1684	1939	771	
6	2338	1798	2022	848	
7	2775	2350	2245	1024	
8	2984	2513	2391	1134	
Calculated zero-field splitting (ZFS) parameters: the axial D and rhombic E parameters of the ground					
manifold (pseudospin S=3/2)					
D	-38.3	-62.9	34.0	-62.4	
E	6.5	5.5	3.1	11.7	

 Table S4: Calculated low-lying spin-orbit energy levels based on DDCI3 method.

Figure S1: Variable-field-variable-temperature magnetization measurement for 1-4 (a-d)

Figure S3: Cole-Cole plots fitting for the determination of the temperature dependence of τ for 1 (a) and 2 (b) under 2 kOe dc field

Figure S4. Temperature dependence ac susceptibility for 3.

Figure S5. Temperature dependence ac susceptibility for 4.

Figure S6. (a) Field dependence of ac susceptibility for 1 at 4 K. (b) Field dependence of relaxation times τ . The solid lines represented the global fitting.

Figure S7. (a) Field dependence of ac susceptibility for **2** at 3 K. (b) Field dependence of relaxation times τ . The solid lines represented the global fitting

Figure S8. (a) Field dependence of ac susceptibility for 2 at 5 K. (b) Field dependence of relaxation times τ . The solid lines represented the global fitting

Figure S9. Calculated $\chi_m T$ vs. *T* plots under 1 kOe dc field

