Self-supported hierarchical core-shell Co₉S₈@NiCo₂O₄ hollow

nanoneedle arrays for asymmetric supercapacitors

Fangfang Zhu^a, Weijing Liu^a, Yu Liu^a, Weidong Shi^{a,*}

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang,

212013, P. R. China.

China.Tel: +86-511-88791800

*E-mail: <u>swd1978@ujs.edu.cn</u>

Fig. S1 SEM images of pure Co_9S_8 hollow nononeedles.

Fig. S2 TEM images of pure Co_9S_8 hollow nononeedles

Fig. S3 Elemental mapping images of Co-L(blue), Co-K(green), Ni(purple), O(orange), S(yellow)

in Co_9S_8 Ni Co_2O_4 core-shell nanoneedles.

Fig. S4 $\rm N_2$ adsorption–desorption isotherms for the hybrid $\rm Co_9S_8@NiCo_2O_4$ core-shell nanoneedles.

Fig. S5 SEM image of the Co_9S_8 @Ni Co_2O_4 core-shell nanoneedles after charging and discharging for 6000 cycles.

Fig. S6 (a) CV curves of pure $NiCo_2O_4$ electrode at various scan rate; (b) GCD curves of pure $NiCo_2O_4$ electrode at different current densities.