SUPPLEMENTARY INFORMATION

Field-induced slow relaxation of magnetization in the S = 3/2 octahedral complexes *trans*-[Co{(OPPh₂)(EPPh₂)N}₂(dmf)₂], E = S, Se: Effects of Co–Se *vs* Co–S coordination[†]

Eleftherios Ferentinos,^{a§} Meixing Xu,^{b§} Alexios Grigoropoulos,^{a#} Ioannis Bratsos,^d Catherine P. Raptopoulou,^d Vassilis Psycharis,^d Shang-Da Jiang,^{b,c*} Panayotis Kyritsis^{a*}

^aInorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece. email: kyritsis@chem.uoa.gr

^bCollege of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Beijing Key Laboratory of Magnetoelectric Materials and Devices, Peking University, Beijing 100871, P. R. China. email: jiangsd@pku.edu.cn

^cBeijing Academy of Quantum Information Sciences, West Bld.#3, No.10 Xibeiwang East Rd., Haidian District, Beijing 100193, P. R. China

^dNCSR "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Athens, Greece

[#]Present address: Department of Chemistry, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, U.K.

[§]These authors contributed equally.

IR spectroscopy

Figure S1. IR spectrum of complex 1 (KBr pellet).

Figure S2. IR spectrum of complex 2 (KBr pellet).

IR spectroscopic characterization of complexes 1 and 2. The IR spectra of complexes 1 and 2 are shown in Figures S1 and S2, respectively. The strong bands observed for complexes 1 and 2 at 1232 cm⁻¹ and 1086-1129 cm⁻¹ are assigned to the v_{as} (P-N-P) and v(P-O) stretching vibrations, respectively, while the intense bands at 593 cm⁻¹ for complex 1 and 560, 542 cm⁻¹ for complex 2 correspond to the v(P-S) and v(P-Se) vibrations, respectively. The $(OPPh_2)(SPPh_2)NH$ ligand exhibits a v_{as} (P-N-P) band at 934 cm⁻¹, v(P-O) bands at 1202 and 1187 cm⁻¹ and a v(P-S) band at 626 and 613 cm⁻¹.¹ In the case of the (OPPh₂)(SePPh₂)NH ligand, strong bands appear at 938, 1182-1200 and 541 cm⁻¹ which have been assigned to v_{as} (P-N-P), v(P-O) and v(P-Se) vibrations, respectively.¹ This behavior confirms the increase in the P-N bond order and the decrease in the P-O and P-S bonds order upon deprotonation and coordination of the ligand to Co(II), due to the delocalization of π -electronic density.^{2, 3} On the other hand, complex 2 shows two v(P-Se) bands, one of the same frequency with the free (OPPh₂)(SePPh₂)NH ligand (542 cm⁻¹) and one shifted to higher energy by 19 cm⁻¹. It should be noted that this unexpected response (*i.e.* splitting and higher frequency shifting) of the v(P-Se) vibration bands has also been observed for $K[(OPPh_2)(SePPh_2)N]$ (561 cm⁻¹), as well as for the *cis*-[Pd{(OPPh_2)(SePPh_2)N}₂] complex (566 and 554 cm⁻¹). Complexes 1 and 2 also exhibit an intense band at 1644 and 1648 cm⁻¹, respectively, which is assigned to the v(C-O) stretch of coordinated DMF. The v(C-O) band is shifted to lower energy by ~ 30 cm⁻¹, compared to free dmf (1675 cm⁻¹), consistent with coordination of DMF to Co(II), as verified by X-ray crystallography. Similar IR bands (1643 cm⁻¹) have also been observed for *trans*-[Ni{(OPPh₂)(EPPh₂)N}₂(dmf)₂], E = (O, S, Se), complexes.⁴

Figure S3. Ortep plot of complex 2. Thermal ellipsoids are presented at a 50% probability level.

PXRD patterns of complexes 1 and 2.

Figure S4. PXRD pattern of complex 1.

Figure S5. PXRD pattern of complex 2.

Figure S6. Orientation of a crystal of complex **1**. The XYZ coordinates are defined as follows: The intersecting line between face (100) and (001) as X axis, the normal direction of face (100) as Z axis and the Y axis is defined according to the right hand rule.

Figure S7. Temperature dependence of the in-phase (upper) and out-of-phase (below) AC susceptibility under 0 Oe (a), 300 Oe (b) and 1000 Oe (c) for complex **1** between 10 and 1000 Hz. The analogous data for complex **2** under 0 Oe (d) and 2000 Oe (e), between 100 and 10000 Hz.

(a)

Figure S8. Cole-Cole plots for complex **1** under 300 Oe (a) and 1000 Oe (b) from 3 to 5 K. Red solid lines represent the fitting results using a generalized Debye model.

Figure S9. Cole-Cole plots for complex **2** under 2000 Oe from 3.25 to 6 K. Red solid lines represent the fitting results using a generalized Debye model..

Table S1. Octahedral S = 3/2 Co(II) complexes showing field-induced slow relaxation of magnetization.

Complex	Coordination sphere	U _{eff} (cm ⁻¹)	$D \text{ or } \Delta_{ax}$ (cm ⁻¹)	$E \text{ or } \Delta_{rh}$ (cm ⁻¹)
Complex 1 (this work)	CoO ₄ S ₂	23.6	$\Delta_{\rm ax} = -487.4$	$\Delta_{\rm rh}=0.15$
Complex 2 (this work)	CoO ₄ Se ₂	18.1	$\Delta_{\rm ax} = -448.4$	$\Delta_{\rm rh} = -0.43$
$[Co(dmphen)_2(NCS)_2]^5$	CoN ₆	17.0	<i>D</i> = 98	<i>E</i> = 8.4
dmphen = 2,9-dimethyl-1,10-phenanthroline			$\Delta_{ax} = 493$	$\Delta_{\rm rh} = 22.5$
$(HNEt_3)[Co^{II}Co^{III}_3L_6]^6$	CoO ₆	76	<i>D</i> = -115	<i>E</i> = 2.8
$H_2L = R-4$ -bromo-2-((2-hydroxy-1-phenylethylimino)methyl)phenol				
$[Co(\mu-L')(\mu-OAc)Y(NO_3)_2]^7$	CoO ₃ N ₃	15.7	<i>D</i> = 47	
$H_2L' = N,N',N''$ -trimethyl-N,N''-bis(2-hydroxy-3- methoxy-5-methylbenzyl)-diethylenetriamine			$\Delta_{\rm ax} = 645.5$	$\Delta_{\rm rh} = -55.8$
$[Co^{II}Co^{III}(L''H_2)_2Cl(H_2O)](H_2O)_3^8$	CoO ₅ Cl	7.9	<i>D</i> = -7.4	
$L''H_4 = 2-[[(2-hydroxy-3-methoxyphenyl)methylene]amino]-2-(hydroxymethyl)-1,3-propanediol$			$\Delta_{\rm ax} = 339$	
$[Co^{II}Co^{III}(L''H_2)_2Br(H_2O)](H_2O)_3^8$	CoO ₅ Br	14.5	<i>D</i> = -9.7	
L"H ₄ = 2-[[(2-hydroxy-3- methoxyphenyl)methylene]amino]-2- (hydroxymethyl)-1,3-propanediol			$\Delta_{\rm ax} = 231$	
$[Co(abpt)_2(tcm)_2]^9$	CoN ₆	60.3	<i>D</i> = 48	<i>E</i> = 13
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
tcm = tricyanomethanide anion				
$[Co(acac)_2(H_2O)_2]^{10}$	CoO ₆	14-17	<i>D</i> = 57	<i>E</i> = 17
acac = acetylacetonate				
[(TBA) ₉ HCo(SiW ₉ O ₃₁)(SiO ₉ O ₃₂)] ²⁺¹¹	CoO ₆	13.5	<i>D</i> = 95.2	<i>E</i> = 7.2
TBA = tetra-n-butylammonium				
$[\operatorname{Co}(\operatorname{dca})_2(\operatorname{atz})_2]_n^{12}$	CoN ₆	5.1	$\Delta_{\rm ax} = -509$	

dca = dicyanamide				
atz = 2-amino-1,3,5-triazine				
[Co(oda)(aterpy)] ¹³	CoO ₃ N ₃	2.9	<i>D</i> = -7.44	
oda ^{2–} = oxodiacetate				
aterpy = 4'-azido-2,2':6',2"-terpyridine				
$[Co(btm)_2(SCN)_2]_n^{14}$	CoN ₆	31.6	<i>D</i> = 56.6	<i>E</i> = 3.7
btm = bis(1H-1,2,4-triazol-1-yl)methane				
$[Co(ppad)_2]_n^{15}$	CoO ₄ N ₂	11.4	<i>D</i> = 76	E = +6.5
ppad = N ³ -(3-pyridoyl)-3-pyridinecarboxamidrazone			$\Delta_{ax} = -482$	
$[Co(bpm)_2(N_3)_2]^{16}$	CoN ₆	23.1		
bpm = bis(pyrazol-1-yl)methane				
$[Co(bpm)_2(H_2O)_2]^{2+16}$	CoN ₄ O ₂	23.1		
bpm = bis(pyrazol-1-yl)methane				
$[Co(9Accm)_2(py)_2]^{17}$	CoO ₄ N ₂		<i>D</i> = 74	<i>E</i> = 1.2
9Accm = curcuminoid ligand				
$[Co(9Accm)_2(bpy)]^{17}$	CoO ₄ N ₂		<i>D</i> = 24	<i>E</i> = -1.9
9Accm = curcuminoid ligand				
$[Co(AcO)_2(py)_2(H_2O)_2]^{18}$	CoO ₄ N ₂	25.0		
py = pyridine				
$[Co(dca)_2(bim)_4]^{19}$	CoN ₆	5.5-	D = 69.6	
dca = dicyanamide		/./	$\Delta_{ax} = -416$	
bim = 1-benzylimidazole				
$[\operatorname{Co}(\operatorname{dca})_2(\operatorname{bim})_2]_n^{19}$	CoN ₆	4.5-	<i>D</i> = 74.3	
dca = dicyanamide		9.2	$\Delta_{ax} = -403$	
bim = 1-benzylimidazole				
$[Co(dca)_2(bmim)_2]_n^{19}$	CoN ₆	11.5-	<i>D</i> = 75.8	
dca = dicyanamide		15.4	$\Delta_{ax} = -606$	
bmim = 1-benzyl-2-methylimidazole				

$[Co(bpy)_2(ClAn)]^{20}$	CoN ₄ O ₂	16.6	<i>D</i> = 64.5	<i>E</i> = 10.1
bpy = 2,2'-bipyridine				
$ClAn^{2-} = chloranilate$				
[Co(SDZ) ₂ bpy] ²¹	CoN ₆	35.2	D = 81.1	<i>E</i> = 2
SDZ = sulfadiazine				
bpy = 2,2'-bipyridine				
$[Co(SDZ)_2(6MQ)_2]^{21}$	CoN ₆	7.0	D = 78.9	
SDZ = sulfadiazine				
6MQ = 6-methoxyquinoline				
$[Co(3,5-dnb)_2(py)_2(H_2O)_2]^{22}$	CoO ₄ N ₂	~ 20	$\Delta_{ax} = 644$	
3,5-Hdnb = 3,5-dinitrobenzoic acid			$\Delta_{ax} = 423$	
py = pyridine				
$Et_4N[Co(hfac)_3]^{23}$	CoO ₆	13.6	<i>D</i> = 117.8	$\Delta_{\rm rh} = 90.3$
hfac = hexafluoroacetylacetonate			Δ _{ax} =428.3	
${[Co(3,3'-Hbpt)_2(SCN)_2].2H_2O}_n^{24}$	CoN ₆	22.6	<i>D</i> = 70.1	E = 0.7
3,3'-Hbpt = 1H-3-(3-pyridyl)-5-(3'-pyridyl)-1,2,4- triazole				
$[Co(T_p^*)_2]^{25}$	CoN ₆	26.8		
$KT_p^* = Potassium hydridotris(3,5-dimethylpyrazole)borate$				
$[Co^{II}Co^{III}(LH_2)_2(CH_3COO)(H_2O)](H_2O)_3^{26}$	CoO ₆	16.9	$\Delta_{ax} = -711$	$\Delta_{\rm rh} = 44$
LH ₄ = 2-[[(2-hydroxy-3-methoxyphenyl)- methylene]amino]-2-(hydroxymethyl)-1,3- propanediol				
$[Co(dppm^{O,O})_3][CoBr_4]^{27}$	CoO ₆		<i>D</i> = 147	
dppm = bis(diphenylphosphanoxido) methane	CoBr ₄			
$[Co(dppm^{O,O})_3][CoCl_4]^{28}$	CoO_6	106	<i>D</i> = 77	
dppm ^{O,O} = bis-(diphenylphosphan)methane	CoCl ₄			
$[Co(dppm^{O,O})_3][CoBr_4]^{28}$	CoO ₆		<i>D</i> = 122	

dppm ^{O,O} = bis-(diphenylphosphan)methane	CoBr ₄			
[Co(dppm ^{O,O}) ₃][CoI ₄] ²⁸	CoO ₆	47.9	D = 99	
dppm ^{O,O} = bis-(diphenylphosphan)methane	CoI ₄			
$[Co(hfac)_2(H_2O)_2]^{29}$	CoO ₆	8.1	Δ _{ax} =-499.7	Δ _{rh} =136.3
hfac = hexafluoroacetylacetonate				
$[Co(pydm)_2](dnbz)_2]^{30}$	CoO ₄ N ₂	27.3	<i>D</i> = 44	
pydm = 2,6 – pyridinedimethanol				
dnbz = dinitrobenzoato				
$[Co(bzpy)_4Cl_2]^{31}$	CoN ₄ Cl ₂		<i>D</i> = 106	
bzpy = 4-benzylpyridine				
$[Co(bzpy)_4(NCS)_2]^{30}$	CoN ₆		<i>D</i> = 90.5	
bzpy = 4-benzylpyridine				
$[Co(L^1)_2]^{2+32}$	CoN ₆	10.35	D=61.1	<i>E</i> = -5.5
L ¹ = pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(L^2)_2]^{2+32}$	CoN ₆	19.1	<i>D</i> = 68.1	<i>E</i> = -5.7
L ² = pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(L^3)_2]^{2+32}$	CoN ₆	15.8	<i>D</i> = 56.4	<i>E</i> = -10.5
L ³ = pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(L^4)_2]^{2+32}$	CoN ₆	21.5	<i>D</i> = -66.4	<i>E</i> = 10.2
L ⁴ = pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(L^5)_2]^{2+32}$	CoN ₆	14.3	<i>D</i> = 62.9	<i>E</i> = -2.4
$L^5 =$ pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(L^6)_2]^{2+32}$	CoN ₆	5.6	<i>D</i> = 74.9	<i>E</i> = -2.7
L ⁶ = pyridine-2,6-bis(oxazoline) (pybox type)				
$[Co(hfa)_2(pic)_2]^{33}$	CoO ₄ N ₂	24.7	<i>D</i> = 24.17	<i>E</i> = 6.9
hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione				
pic = 4-methylpyridine				
$[Co(dcnm)(H_2O)(phen)_2](dcnm)^{34}$	CoN ₄ O ₂	1.4	<i>D</i> = 79	<i>E</i> = 0.83

dcnm = dicyanonitrosomethanide				
$[Co(H_2pimdc)_2(phen)]_n^{35}$	CoN ₄ O ₂	23.1	<i>D</i> = 3.5	<i>E</i> = 1.0
H ₂ pimdc = 2-propyl-imidazole-4,5-dicarboxylate				
[Co(abpt) ₂ (H ₂ O) ₂](N[C(CN) ₂] ₂) ₂ ³⁶	CoN ₄ O ₂	66.4	<i>D</i> = 34.9	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
[Co(abpt) ₂ (H ₂ O) ₂](NO ₂ C(CN) ₂) ₂ ³⁶	CoN ₄ O ₂	72.2	<i>D</i> = 31.0	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
[Co(abpt) ₂ (CH ₃ OH) ₂](C(CN)[C(CN) ₂] ₂) ₂ ³⁶	CoN ₄ O ₂	13.1	<i>D</i> = 37.8	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
$[Co(abpt)_2(NO_2NCN)_2]^{36}$	CoN ₆	44.5	<i>D</i> = 41.4	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
$[Co(abpt)_2(NCSe)_2]^{36}$	CoN ₆	51.4	<i>D</i> = 37.7	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
$[Co(abpt)_2[ONC(CN)_2]_2]^{36}$	CoN ₄ O ₂	47.3	$\Delta_{\rm ax} = -1345$	
abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole				
[Co(bppCOOH) ₂](ClO ₄) ₂ ³⁷	CoN ₆	11	<i>D</i> = 51.6	
bpp-COOMe = methyl 2,6-di(pyrazol-1-yl)pyridine- 4-carboxylate				
$[Co(pyrtpy)_2](BPh_4)_2^{38}$	CoN ₆	6.8	<i>D</i> = -53.6	<i>E</i> = 5.53
pyrtpy =4'-pyrrolidine-2,2':6',2"-terpyridine				
$[Co(bpp-COOMe)_2](ClO_4)_2^{39}$	CoN ₆	30.3	<i>D</i> = -57.5	<i>E</i> = 15.7
bpp-COOMe = methyl 2,6-di(pyrazol-1-yl)pyridine- 4-carboxylate			$\Delta_{\rm ax} = -1850$	$\Delta_{\rm rh} = 130$
$[CoL_2(H_2O)_2]^{40}$	CoO ₄ N ₂	38.2	<i>D</i> = 62.1	E = 3.17
HL = quinoline-2-carboxylic acid			$\Delta_{ax} = 106$	
$[\mathrm{Co}L_2(\mathrm{CH}_3\mathrm{CH}_2\mathrm{O})_2]^{40}$	CoO ₄ N ₂	30.3	<i>D</i> = 72.08	<i>E</i> = 7.37
HL = quinoline-2-carboxylic acid			$\Delta_{ax} = 150$	
$[Co(pydca)(dmpy)]_2^{41}$	CoO ₄ N ₂		D/hc = 55	<i>E</i> /hc = 19
pydca = pyridine-2,6-dicarboxylato			$\Delta_{ax} = -846$	

dmpy = 2,6-dimethanolpyridine)				
$[Co(teaH_3)](piv)]^{42}$	CoO ₄ N ₂		D/hc = 23.1	
$teaH_3 = triethanolamine$				
piv = trimethylacetate				
$[Co(L)_2](BF_4)_2 \cdot 2MeNO_2^{43}$	CoN ₆	14.6		
L = 2,6-di(pyrazol-1-yl)-4-(bromomethyl)pyridine				
$[Co(L)_4(NO_3)_2]^{44}$	CoN ₄ O ₂	10.3	<i>D</i> = 71.4	E = 13
L = 3-phenylpyrazole				
$[Co(L)_4(NO_3)_2]^{44}$	CoN ₄ O ₂	5.1	<i>D</i> = 71.5	E = 9.8
L = 4-methylpyridine				
[Co(imidazole) ₆](BPh ₄) ₂ ⁴⁵	CoN ₆	15		
$[Co(imidazole)_6](NO_3)_2^{45}$	CoN ₆	4.4		
[Co(2-Himap) ₂] ⁴⁶	CoN ₄ O ₂	9.7	<i>D</i> = 36.7	<i>E</i> = 2.0
2-Himap = o-[(1H-imidazol-2- yl)methylideneamino]phenol				
[Co(AcPyOx) ₃ BC ₆ H ₅]ClO ₄ ⁴⁷	CoN ₆	70.5	<i>D</i> = -86	
AcPyOx = 2-Acetylpyridineoxime				
$[[Co(L1)(2,2'-bipy)] \cdot 0.5DMF]_n^{48}$	CoO ₄ N ₂	9.7	<i>D</i> = -56.2	E = 16.4
$H_2L1 = 2,2'$ -[benzene-1,4- diylbis(methanediylsulfanediyl)]dibenzoic acid				
$[[Co(bimb)(H_2O)_4] \cdot (L2) \cdot 2DMF]_n^{48}$	CoO ₄ N ₂	6.1	<i>D</i> = 57.5	E = 13.0
$H_2L2 = 2,2'-(1,4-phenylenebis(methylene))bis(sulfanediyl)dinicotinic acid$				
bimb = 1,4-bis(benzoimidazo-1-ly)benzene				
$[Co(HATN)(hfca)_2] \cdot CH_2 Cl_2^{49}$	CoO ₄ N ₂	11.9	<i>D</i> = -60	
HATN = 5,6,11,12,17,18-hexaazatrinaphthylene				
[Co ₂ (3-fba) ₄ (4,4'-bpy) ₃ (CH ₂ OH) ₂] ⁵⁰	CoO ₄ N ₂	15.8		
3-Hfba = 3-fluorobenzoic acid				
4,4'-bpy = $4,4$ '- bipyridine				

$[Co(abtp)_2(N_3)_2]^{51}$	CoN ₆	54.7	<i>D</i> = -24.1	<i>E</i> = 7.5
abpt = 4-amino-3,5-				
bis(pyridin-2-yl)-1,2,4-triazole				
$[Co(bim)_4(tcm)_2]^{52}$	CoN ₆	28	<i>D</i> = 46.1	
bim = 1-benzylimidazole			$\Delta_{ax} = 667$	
tcm ⁻ = tricyanomethanide ion				
$[Co(bmim)_4(tcm)_2]^{52}$	CoN ₆	20	<i>D</i> = 80.1	
bmim= 1-benzyl-2-methylbenzimidazole			$\Delta_{ax} = -631$	
tcm ⁻ = tricyanomethanide ion				
$[Co(2,6-dfba)_2(bpp)_2(H_2O)_2]_n^{53}$	CoO ₄ N ₂	31.5	<i>D</i> = 53.2	E = 7.7
2,6-Hdfba = 2,6-difluorobenzoic acid			$\Delta_{ax} = 119$	
bpp = 1,3-bis(4-pyridyl)propane				
$[Co(2,6-dfba)_2(bpe)_2(H_2O)_2]_n^{53}$	CoO ₄ N ₂	40.3	<i>D</i> = 65.7	E = 4.5
2,6-Hdfba = 2,6-difluorobenzoic acid			$\Delta_{ax} = -502$	
bpe = 1,2-bis(4-pyridyl)ethylene				

	compound 1	compound 2
Formula	C ₅₄ H ₅₄ CoN ₄ O ₄ P ₄ S ₂	$C_{54}H_{54}CoN_4O_4P_4Se_2$
Fw	1069.94	1163.74
Space group	P-1	P-1
<i>a</i> (Å)	9.2942 (1)	9.2622(2)
<i>b</i> (Å)	10.3734 (1)	10.4256(2)
<i>c</i> (Å)	13.3197 (2)	13.4612(3)
α (°)	89.528 (1)	89.4230(10)
β (°)	85.318 (1)	85.6970(10)
γ (°)	84.698 (1)	85.3890(10)
$V(Å^3)$	1274.42 (3)	1292.00(5)
Ζ	1	1
<i>T</i> (°C)	-113	-113
Radiation	Cu Ka	Cu <i>K</i> α
$\rho_{\text{calcd}}(\text{g cm}^{-3})$	1.394	1.496
μ (mm ⁻¹)	4.995	5.783
Reflections with $I > 2\sigma(I)$	3608	3920
$R_1^{a} \left[I > 2\sigma(I) \right]$	0.0442	0.0317
$wR_2^a[I>2\sigma(I)]$	0.1119	0.0734

Table S2. Crystallographic data for complexes 1 and 2.

^a $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$ and $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$, $w = 1/[\sigma^2(F_o^2) + (\alpha P)^2 + bP]$ and $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. $\alpha = 0.0571$, b = 1.2764 for 1; $\alpha = 0.0304$, b = 2.1175 for 2.

Further experimental crystallographic details for 1: $2\theta_{\text{max}} = 130^{\circ}$; reflections collected/unique/used, 15108/4038 [R_{int} = 0.0472]/4038; 397 parameters refined; $(\Delta/\sigma)_{\text{max}} = 0.005$; $(\Delta\rho)_{\text{max}}/(\Delta\rho)_{\text{min}} = 0.513/-0.461 \text{ e/Å}^3$; *R*1/w*R*2 (for all data), 0.0496/0.1190.

Further experimental crystallographic details for **2**: $2\theta_{\text{max}} = 130$ °; reflections collected/unique/used, 26137/ 4124 [R_{int} = 0.0310]/4124; 417 parameters refined; $(\Delta/\sigma)_{\text{max}} = 0.006$; $(\Delta\rho)_{\text{max}}/(\Delta\rho)_{\text{min}} = 0.589/-0.454 \text{ e/Å}^3$; *R*1/w*R*2 (for all data), 0.0335/0.0751.

References

- 1. A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 3659-3665.
- 2. C. Silvestru and J. E. Drake, Coord. Chem. Rev., 2001, 223, 117-216.
- 3. D. Maganas, S. S. Staniland, A. Grigoropoulos, F. White, S. Parsons, N. Robertson, P. Kyritsis and G. Pneumatikakis, *Dalton Trans.*, 2006, 2301-2315.
- 4. E. Ferentinos, D. Maganas, C. P. Raptopoulou, A. Terzis, V. Psycharis, N. Robertson and P. Kyritsis, *Dalton Trans.*, 2011, **40**, 169-180.
- 5. J. Vallejo, I. Castro, R. Ruiz-Garcia, J. Cano, M. Julve, F. Lloret, G. De Munno, W. Wernsdorfer and E. Pardo, J. Am. Chem. Soc., 2012, **134**, 15704-15707.
- 6. Y.-Y. Zhu, C. Cui, Y.-Q. Zhang, J.-H. Jia, X. Guo, C. Gao, K. Qian, S.-D. Jiang, B.-W. Wang, Z.-M. Wang and S. Gao, *Chem. Sci.*, 2013, **4**, 1802-1806.
- 7. E. Colacio, J. Ruiz, E. Ruiz, E. Cremades, J. Krzystek, S. Carretta, J. Cano, T. Guidi, W. Wernsdorfer and E. K. Brechin, *Angew. Chem. Int. Ed.*, 2013, **52**, 9130-9134.
- 8. V. Chandrasekhar, A. Dey, A. J. Mota and E. Colacio, *Inorg. Chem.*, 2013, **52**, 4554-4561.
- R. Herchel, L. Váhovská, I. Potočňák and Z. Trávníček, *Inorg. Chem.*, 2014, 53, 5896-5898.
- 10. S. Gomez-Coca, A. Urtizberea, E. Cremades, P. J. Alonso, A. Camon, E. Ruiz and F. Luis, *Nat. Commun.*, 2014, **5**, 8.
- 11. R. Sato, K. Suzuki, T. Minato, M. Shinoe, K. Yamaguchi and N. Mizuno, *Chem. Commun.*, 2015.
- 12. J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, F. Lloret and M. Julve, *Dalton Trans.*, 2015, 44, 2989-2992.
- 13. C. Plenk, J. Krause and E. Rentschler, Eur. J. Inorg. Chem., 2015, 2015, 370-374.
- 14. Y.-Y. Zhu, M.-S. Zhu, T.-T. Yin, Y.-S. Meng, Z.-Q. Wu, Y.-Q. Zhang and S. Gao, *Inorg. Chem.*, 2015, **54**, 3716-3718.
- X. Liu, L. Sun, H. Zhou, P. Cen, X. Jin, G. Xie, S. Chen and Q. Hu, *Inorg. Chem.*, 2015, 54, 8884-8886.
- 16. Y.-Y. Zhu, T.-T. Yin, C.-W. Liu, C. Gao, Z.-Q. Wu, Y.-Q. Zhang, B.-W. Wang and S. Gao, *Supramol. Chem.*, 2015, **27**, 401-406.
- R. Díaz-Torres, M. Menelaou, O. Roubeau, A. Sorrenti, G. Brandariz-de-Pedro, E. C. Sañudo, S. J. Teat, J. Fraxedas, E. Ruiz and N. Aliaga-Alcalde, *Chem. Sci.*, 2016, 7, 2793-2803.
- J. Walsh, G. Bowling, A.-M. Ariciu, N. Jailani, N. Chilton, P. Waddell, D. Collison, F. Tuna and L. Higham, *Magnetochemistry*, 2016, 2, 23.
- A. Świtlicka-Olszewska, J. Palion-Gazda, T. Klemens, B. Machura, J. Vallejo, J. Cano, F. Lloret and M. Julve, *Dalton Trans.*, 2016, 45, 10181-10193.
- 20. R. Ishikawa, Y. Horii, R. Nakanishi, S. Ueno, B. K. Breedlove, M. Yamashita and S. Kawata, *Eur. J. Inorg. Chem.*, 2016, **2016**, 3233-3239.
- C. Villa-Pérez, I. Oyarzabal, G. A. Echeverría, G. C. Valencia-Uribe, J. M. Seco and D. B. Soria, *Eur. J. Inorg. Chem.*, 2016, 2016, 4835-4841.
- 22. S. Roy, I. Oyarzabal, J. Vallejo, J. Cano, E. Colacio, A. Bauza, A. Frontera, A. M. Kirillov, M. G. B. Drew and S. Das, *Inorg. Chem.*, 2016, **55**, 8502-8513.

- A. V. Palii, D. V. Korchagin, E. A. Yureva, A. V. Akimov, E. Y. Misochko, G. V. Shilov, A. D. Talantsev, R. B. Morgunov, S. M. Aldoshin and B. S. Tsukerblat, *Inorg. Chem.*, 2016, 55, 9696-9706.
- L. Sun, S. Zhang, S. P. Chen, B. Yin, Y. C. Sun, Z. X. Wang, Z. W. Ouyang, J. L. Ren, W. Y. Wang, Q. Wei, G. Xie and S. L. Gao, *J. Mater. Chem. C*, 2016, 4, 7798-7808.
- 25. J. Li, Y. Han, F. Cao, R. M. Wei, Y. Q. Zhang and Y. Song, *Dalton Trans.*, 2016, 45, 9279-9284.
- E. A. Buvaylo, V. N. Kokozay, O. Y. Vassilyeva, B. W. Skelton, A. Ozarowski, J. Titiš, B. Vranovičová and R. Boča, *Inorg. Chem.*, 2017, 56, 6999-7009.
- 27. F. Varga, C. Rajnák, J. Titiš, J. Moncol' and R. Boča, *Dalton Trans.*, 2017, **46**, 4148-4151.
- 28. C. Rajnak, F. Varga, J. Titis, J. Moncol and R. Boca, *Inorg. Chem.*, 2018, 57, 4352-4358.
- 29. D. V. Korchagin, A. V. Palii, E. A. Yureva, A. V. Akimov, E. Y. Misochko, G. V. Shilov, A. D. Talantsev, R. B. Morgunov, A. A. Shakin, S. M. Aldoshin and B. S. Tsukerblat, *Dalton Trans.*, 2017, **46**, 7540-7548.
- 30. D. Valigura, C. Rajnák, J. Moncol, J. Titiš and R. Boča, *Dalton Trans.*, 2017, **46**, 10950-10956.
- 31. C. Rajnák, J. Titiš, J. Moncol', F. Renz and R. Boča, *Eur. J. Inorg. Chem.*, 2017, **2017**, 1520-1525.
- 32. Z. Y. Ding, Y. S. Meng, Y. Xiao, Y. Q. Zhang, Y. Y. Zhu and S. Gao, *Inorg. Chem. Front.*, 2017, **4**, 1909-1916.
- G. Novitchi, S. Jiang, S. Shova, F. Rida, I. Hlavička, M. Orlita, W. Wernsdorfer, R. Hamze, C. Martins, N. Suaud, N. Guihéry, A.-L. Barra and C. Train, *Inorg. Chem.*, 2017, 56, 14809-14822.
- 34. I. Potocnak, K. Raczova, E. Cizmar, L. Vahovska, O. Bukrynov, S. Vitushkina and L. Findorakova, *Polyhedron*, 2017, **137**, 112-121.
- 35. H.-W. Wei, Q.-F. Yang, X.-Y. Lai, X.-Z. Wang, T.-L. Yang, Q. Hou and X.-Y. Liu, *CrystEngComm*, 2018, **20**, 962-968.
- 36. L. Váhovská, S. Vitushkina, I. Potočňák, Z. Trávníček and R. Herchel, *Dalton Trans.*, 2018, **47**, 1498-1512.
- 37. V. Garcia-Lopez, F. J. Orts-Mula, M. Palacios-Corella, J. M. Clemente-Juan, M. Clemente-Leon and E. Coronado, *Polyhedron*, 2018, **150**, 54-60.
- 38. R. F. Higgins, B. N. Livesay, T. J. Ozumerzifon, J. P. Joyce, A. K. Rappe and M. P. Shores, *Polyhedron*, 2018, **143**, 193-200.
- 39. L. Rigamonti, N. Bridonneau, G. Poneti, L. Tesi, L. Sorace, D. Pinkowicz, J. Jover, E. Ruiz, R. Sessoli and A. Cornia, *Chem. Eur. J.*, 2018, **24**, 8857-8868.
- 40. Z.-B. Hu, Z.-Y. Jing, M.-M. Li, L. Yin, Y.-D. Gao, F. Yu, T.-P. Hu, Z. Wang and Y. Song, *Inorg. Chem.*, 2018, **57**, 10761-10767.
- 41. R. Boča, C. Rajnák, J. Moncol, J. Titiš and D. Valigura, *Inorg. Chem.*, 2018, **57**, 14314-14321.
- 42. C. Sarto, M. Rouzières, J.-L. Liu, H. Bamberger, J. van Slageren, R. Clérac and P. Alborés, *Dalton Trans.*, 2018.
- 43. H. Douib, L. Cornet, J. F. Gonzalez, E. Trzop, V. Dorcet, A. Gouasmia, L. Ouahab, O. Cador and F. Pointillart, *Eur. J. Inorg. Chem.*, 2018, **2018**, 4452-4457.
- 44. J. J. Zhou, J. B. Song, A. H. Yuan, Z. X. Wang, L. Chen and Z. W. Ouyang, *Inorg. Chim. Acta*, 2018, **479**, 113-119.

- 45. L. Chen, J. J. Zhou, H. H. Cui, A. H. Yuan, Z. X. Wang, Y. Q. Zhang, Z. W. Ouyang and Y. Song, *Dalton Trans.*, 2018, **47**, 2506-2510.
- 46. D. Sertphon, K. S. Murray, W. Phonsri, J. Jover, E. Ruiz, S. G. Telfer, A. Alkas, P. Harding and D. J. Harding, *Dalton Trans.*, 2018, **47**, 859-867.
- 47. A. A. Pavlov, S. A. Savkina, A. S. Belov, Y. V. Nelyubina, N. N. Efimov, Y. Z. Voloshin and V. V. Novikov, *Inorg. Chem.*, 2017, **56**, 6943-6951.
- 48. Z. Chen, L. Yin, X. Mi, S. Wang, F. Cao, Z. Wang, Y. Li, J. Lu and J. Dou, *Inorg. Chem. Front.*, 2018, **5**, 2314-2320.
- 49. M. A. Lemes, F. Magnan, B. Gabidullin and J. Brusso, *Dalton Trans.*, 2018, **47**, 4678-4684.
- 50. P. Cen, W. Yuan, M. Tan, B. Chen, W. Song, Z. Wang and X. Liu, *Inorg. Chem. Commun.*, 2018.
- 51. L. Váhovská, O. Bukrynov, I. Potočňák, E. Čižmár, A. Kliuikov, S. Vitushkina, M. Dušek and R. Herchel, *Eur. J. Inorg. Chem.*, DOI: 10.1002/ejic.201801225
- 52. A. Świtlicka, B. Machura, J. Palion-Gazda, M. Julve, F. Lloret and J. Cano, *Dalton Trans.*, 2019, **48**, 1404-1417.
- 53. Y. Wu, D. Tian, J. Ferrando-Soria, J. Cano, L. Yin, Z. Ouyang, Z. Wang, S. Luo, X. Liu and E. Pardo, *Inorg. Chem. Front.*, 2019, **6**, 848-856.