Synthesis of a Zn(II)-based 1D zigzag coordination polymer for the fabrication of optoelectronic device with remarkably high photosensitivity

Basudeb Dutta,^a Dhananjay Das,^b Joydeep Datta, ^bAngeera Chandra,^c Srikanta Jana,^c Chittaranjan Sinha,^c Partha Pratim Ray,^b and Mohammad Hedayetullah Mir*^a

^aDepartment of Chemistry, Aliah University, New Town, Kolkata 700 156, India.

^bDepartment of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.

^cDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India.

To whom correspondence should be addressed. E-mails: <u>chmmir@gmail.com</u>

Supporting Information

Fig. S1 3D supramolecular architecture of compound 1.

Formula	$C_{77}H_{49}Cl_4N_{12}O_{19}Zn_4$			
fw	1849.64			
cryst syst	monoclinic			
space group	$P2_{1}/c$			
<i>a</i> (Å)	14.6802(6)			
<i>b</i> (Å)	16.8579(9)			
<i>c</i> (Å)	16.1761(7)			
a(deg)	90			
ß(deg)	96.378(3)			
γ (deg)	90			
$V(Å^3)$	3978.4(3)			
Ζ	2			
$D_{\text{calcd}}(\text{g/cm}^3)$	1.544			
μ (mm ⁻¹)	1.404			
λ (Å)	0.71073			
data[$I > 2\sigma(I)$]/params	6835/539			
GOF on F^2	1.028			
final <i>R</i> indices $[I \ge 2\sigma(I)]^{a,b}$	R1 = 0.0357			
	wR2 = 0.0962			
${}^{a}R1 = \Sigma F_{o} - F_{c} / \Sigma F_{o} , {}^{b}W$	$\overline{R2} = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}.$			

Table S1 Crystal data and refinement parameters of compound 1

Zn1 O1	1.985(2)	N2 Zn1 N3	74.36(9)
Zn1 O5	2.006(2)	N1 Zn1 N3	150.58(9)
Zn1 N2	2.085(2)	O3 Zn2 O7	104.10(10)
Zn1 N1	2.147(2)	O3 Zn2 N5	134.32(10)
Zn1 N3	2.211(3)	O7 Zn2 N5	120.83(9)
Zn2 O3	1.957(2)	O3 Zn2 N6	101.95(10)
Zn2 O7	1.971(2)	O7 Zn2 N6	104.43(10)
Zn2 N5	2.079(2)	N5 Zn2 N6	75.90(9)
Zn2 N6	2.160(2)	O3 Zn2 N4	99.15(10)
Zn2 N4	2.197(3)	O7 Zn2 N4	89.87(9)
O1 Zn1 O5	99.63(9)	N5 Zn2 N4	74.72(9)
O1 Zn1 N2	127.38(9)	N6 Zn2 N4	150.60(9)
O5 Zn1 N2	130.85(9)	C40 O1 Zn1	119.80(19)
O1 Zn1 N1	110.91(10)	C8 O5 Zn1	107.33(19)
O5 Zn1 N1	102.06(9)	C29 N2 Zn1	120.66(17)
N2 Zn1 N1	76.22(9)	C33 N2 Zn1	118.22(18)
O1 Zn1 N3	87.24(9)	C5 O7 Zn2	122.9(2)
O5 Zn1 N3	97.19(9)	C1 O3 Zn2	120.4(2)
C14 N5 Zn2	120.12(19)	C23 N6 Zn2	125.7(2)
C19 N6 Zn2	115.4(2)	C38 N1 Zn1	125.3(2)
C34 N1 Zn1	115.56(18)	C24 N3 Zn1	126.3(2)
C28 N3 Zn1	116.08(18)	C13 N4 Zn2	116.01(19)
C41 N5 Zn2	118.83(19)	C9 N4 Zn2	125.5(2)

 Table S2 Selected bond lengths and bond angles in 1

Table	S 3	$\pi \cdots \pi$	distances	in	1
1 abit	00	<i>n n</i>	anstances	111	-

Cg→Cg	Cg-Cg(Å)
$Cg(1) \rightarrow Cg(7)$	3.8906(17)
$Cg(4) \rightarrow Cg(9)$	3.6680(17)
$Cg(2) \rightarrow Cg(7)$	3.8906(17)
$Cg(3) \rightarrow Cg(1)$	2.6599(15)
$Cg(3) \rightarrow Cg(2)$	2.6599(15)
$Cg(4) \rightarrow Cg(1)$	2.7536(16)
$Cg(4) \rightarrow Cg(2)$	2.7536(16)
$Cg(8) \rightarrow Cg(9)$	3.6680(19)

Table S4 X–H··· π distances in 1

X–H→Cg	H···Cg (Å)	X⋯Cg (Å)	< X–H···Cg (°)
$O(9)-H(9A) \rightarrow Cg(4)$	2.92	3.624(6)	145
$O(9)-H(9A) \rightarrow Cg(8)$	2.65	3.436(6)	160

π rings are:

 $\begin{array}{l} Cg(3) = Zn(1)/N(1)/C(34)/C(33)/N(2)\\ Cg(4) = Zn(1)/N(2)/C(29)/C(28)/N(3)\\ Cg(5) = Zn(2)/N(4)/C(13)/C(14)/N(5)\\ Cg(6) = Zn(2)/N(5)/C(41)/C(19)/N(6)\\ Cg(7) = N(1)/C(34)/C(35)/C(36)/C(37)/C(38)\\ Cg(8) = N(2)/C(29)/C(30)/C(31)/C(32)/C(33)\\ Cg(9) = N(3)/C(24)/C(25)/C(26)/C(27)/C(28)\\ Cg(10) = N(4)/C(9)/C(10)/C(11)/C(12)/C(13)\\ Cg(11) = N(5)/C(14)/C(15)/C(16)/C(17)/C(41)\\ Cg(12) = N(6)/C(19)/C(20)/C(21)/C(22)/C(23)\\ \end{array}$

Donor (D)–H···Acceptor (A)	D–H (Å)	H…A (Å)	$D \cdots A(Å)$	< D-H···A (°)
O(0) $U(0A)$ $O(6)$	0.82	2.42	2 680(6)	100
$O(9) - \Pi(9A) \cdots O(0)$	0.82	2.42	2.080(0)	100
O(11)–H(11A)····O(4)	0.86(4)	2.05(3)	2.827(4)	150(5)
O(11)–H(11B)····O(2)	0.87(5)	2.12(5)	2.925(4)	156(5)
C(12)-H(12)····O(7)	0.93	2.59	3.182(4)	122
C(17)-H(17)···O(8)	0.93	2.50	3.125(4)	125

Table S5 Hydrogen bonding distances and angles in 1

Fig. S2 TGA plot of 1.

Fig. S3 PXRD patterns of simulated 1 (black) and as-synthesized 1 (pink).

	W	The second secon	J. J	
LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4
-3.11 eV	-3.01 eV	-1.97 eV	-1.82 eV	-1.67 eV
7	1			
НОМО	HOMO-1	HOMO-2	HOMO-3	HOMO-4
-6.8 eV	-7.0 eV	-7.32 eV	-7.52 eV	-7.65 eV

 Table S6 DFT table of the compound 1

Fig. S4 Schematic diagram of possible mechanism for the charge transport in 1.

Compound	Condition	Ideality	Barrier	Transit	Photo	References
		factor	height, Φb (eV)	time, τ (s)	sensitivity	
[Zn(adc)(4-	Dark	1.93	0.45	1.03 ×10 ⁻³	2.73	1
$nvp)_2(H_2O)_2]_n$	light	1.43	0.38	3.04×10^{-4}		
$\begin{bmatrix} Cu_2(muco)_2(py)_4 \\ 1 & 4U \\ 0 & 2Et \\ 0 & U \end{bmatrix}$	Dark	-	-	-	1.65	2
J.4H2O.2EIOH	light	-	-	-		
$C_{40}H_{34}Cu_2N_6O_{18}$	Dark	2.78	0.47	1.01×10^{-1}	2.27	3
	light	1.85	0.43	5.29×10^{-2}		
$C_{20}H_{18}CuN_2O_{10}$	Dark	2.08	0.44	1.33×10^{-1}	3.77	3
	light	1.13	0.41	4.59×10^{-2}		
[Cd(4-	Dark	5.52	0.367	1.02×10^{-5}	-	4
$bpa)(SCN)_2 J_n$	light	3.54	0.337	5.39 × 10 ⁻⁶	-	
[(NCS)Pb(H ₂ O)-	Dark	0.52	0.71	0.35× 10 ⁻⁶	5.76	5
LINI(INCS)] _n	light	0.79	0.55	0.11× 10 ⁻⁶		
$[{CuLNa}_2(m-1,1,2)]$	Dark	0.35	0.71	0.135	57	6
1,1,5- NCS)HgCl ₂ (m- 1,3-NCS)] _n	light	0.58	0.62	0.074		
[Zn(INH)(succ)] _n	Dark	1.43	0.368	1.7×10^{-3}		7
	light					
${[Zn(adc)(4-spy)_2(H_2O)_2]}_n$	Dark	2.89	0.43	3.82 × 10-5	1.96	8
	light	2.08	0.39	3.04 × 10-5		
$[Zn_4(adc)_4(4-$	Dark	3.21	0.41	1.02×10-6	1134	This Work
2H ₂ O	light	3.06	0.27	1.25×10-9		

Table S7 Table for comparative data on the performance of materials

References:

1. B. Dutta, A. Dey, S. Maity, C. Sinha, P. P. Ray and M. H. Mir, ACS Omega, 2018, 3, 12060–12067.

2. B. Dutta, S. Maity, S. Ghosh, C. Sinha and M. H. Mir, *ChemistrySelect*, 2018, 3, 6985–6991.

3. A. Hossain, A. Dey, S. Kumar Seth, P. P. Ray, P. Ballester, R. G. Pritchard, J. O.-Castro, A. Frontera and S. Mukhopadhyay, *ACS Omega*, 2018, **3**, 9160–9171.

4. S. Halder, A. Dey, A. Bhattacharjee, J. O.-Castro, A. Frontera, P. P. Ray and P. Roy, *Dalton Trans.*, 2017, **46**, 11239–11249.

5. S. Khan, S. Halder, P. P. Ray, S. Herrero, R. G.-Prieto, M. G. B. Drew and S. Chattopadhyay, *ACS Omega*, 2018, **3**, 12788–12796.

6. S. Roy, S. Halder, M. G. B. Drew, P. P. Ray and S. Chattopadhyay, *New J. Chem.*, 2018, **42**, 15295–15305.

7. K. Naskar, A. Dey, B. Dutta, F. Ahmed, C. Sen, M. H. Mir, P. P. Roy and C. Sinha, *Cryst. Growth Des.*, 2017, **17**, 3267–3276.

8. B. Dutta, A. Dey, K. Naskar, S. Maity, F. Ahmed, S. Islam, C. Sinha, P. Ghosh, P. P. Ray and M. H. Mir, *New J. Chem.*, 2018, **42**, 10309–10316.