ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

An Integrated ESI-MS/EPR/Computational Characterization of the Binding of Metal Species to Proteins: Vanadium Drugs–Myoglobin Application †

Giuseppe Sciortino,^{a,b} Daniele Sanna,*^c Valeria Ugone,^a Jean-Didier Maréchal,*^b and Eugenio Garribba,*^a

- ^a Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy. E-mail: garribba@uniss.it; Tel: +39 079 229487.
- ^b Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain. Jeandidier.Marechal@uab.cat; Tel: +34 935814936.
- ^c Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy. E-mail: daniele.sanna@icb.cnr.it; Tel: +39 079 2841207.

* Corresponding authors.

Ion	Composition	Exptl m/z ^a	Calcd m/z ^a	Error (ppm) ^b
[VO(mim) ₂ +H] [−]	$C_{16}H_{17}N_4O_9V$	460.04490	460.04407	1.8
$[VO(mim)_2]^{2-}$	$C_{16}H_{16}N_4O_9V$	229.51825	229.51839	-0.6
[VO(mim) ₂ (OH)+2H] ⁻	$C_{16}H_{17}N_4O_{10}V\\$	476.03973	476.03898	1.6
$[VO(mim)_2+2H]^-$	$C_{16}H_{18}N_4O_{10}V$	477.04744	477.04680	1.2

Table S1 Species identified in the ESI-MS spectra of the system $V^{IV}O^{2+}/L$ -mimosinate.

^{*a*} The experimental and calculated m/z values refer to the monoisotopic representative peak. ^{*b*} Deviation in ppm from the calculated values, calculated as $10^6 \times [(\text{Exptl m/z} - \text{Calcd m/z})/\text{Calcd m/z}]$.

Complex	$A_{\rm x}^{\rm calcd}$	$A_{\rm y}^{\rm calcd}$	$A_{\rm z}^{\rm calcd}$	$A_{\rm z}^{\rm exptl}$	PD ^b
<i>SPY</i> -5-12	-48.75	-57.32	-158.2	-169.1	-6.4
<i>SPY</i> -5-13	-48.53	-57.59	-158.0	-169.1	-6.5
<i>OC</i> -6-32	-59.17	-63.54	-163.8	-169.1	-3.1
<i>OC</i> -6-23	-57.37	-62.77	-162.9	-169.1	-3.7
OC-6-34 ^c	-60.51	-64.32	-164.6	-169.1	-2.6
OC-6-24 ^c	-59.40	-63.48	-164.4	-169.1	-2.8

Table S2 ⁵¹V hyperfine coupling constants calculated at the level of theory BHandHLYP/6-311+g(d) for the possible bis-chelated V^{IV}O complexes formed by L-mimosinate.^{*a*}

^{*a*} All the *A* values are reported in 10⁻⁴ cm⁻¹. ^{*b*} Percent deviation (PD) with respect to the absolute experimental value calculated as: $100 \times [(|A_z|^{calcd} - |A_z|^{exptl})/|A_z|^{exptl}]$. ^{*c*} With boldface text the most probable isomers are shown.

Site	Residues	V–D ^a	$F_{\max}{}^{b}$	$F_{\rm mean}$ ^c	Pop. ^d
1 st	His24; His119	2.108, 2.440	44.8	42.6	92%
2^{nd}	His82; Asp141	2.180, 2.452	34.5	30.7	64%
3 rd	Glu83; Asp141	2.181, 2.406	38.7	36.8	94%
4 th	His116; Gln124	2.683, 2.174	32.8	31.9	52%

Table S3 Docking solutions for the interaction of VO(acac)⁺ with myoglobin.

^{*a*} Distance in Å; D = N, O. ^{*b*} *Fitness* value for the most stable pose of each cluster (F_{max}). ^{*c*} Mean *Fitness* value of the GoldScore scoring function for each cluster (F_{mean}). ^{*d*} Percent population of the cluster.

Fig. S1 ESI-MS spectra recorded in the systems: (a) Mb; (b) $[VO(dhp)_2]/Mb$; (c) *cis*- $[VO(mim)_2(H_2O)]^{2-}/Mb$; (d) *cis*- $[VO(ma)_2(H_2O)]/Mb$; (e) $[VO(acac)_2]/Mb$. Mb concentration was 5 μ M and molar ratio V/Mb was 3/1.

Fig. S2 Deconvoluted ESI-MS spectrum of myoglobin (concentration 5 μ M). Mass is expressed in Da.

Fig. S3 Zoom of the multipeak with charge +9 of (a) Mb and (b) system $[VO(dhp)_2]/Mb$. Mb concentration was 5 μ M and molar ratio V/Mb was 3/1. The most intense peak due to the adducts $[VO(dhp)^+]$ –Mb and $[VO(dhp)_2]$ –Mb are indicted.

Fig. S4 Ultrazoom of the two most intense peaks with charge +9 detected in the systems: (a) Mb; (b) $[VO(dhp)_2]/Mb$; (c) *cis*- $[VO(mim)_2(H_2O)]^{2-}/Mb$; (d) *cis*- $[VO(ma)_2(H_2O)]/Mb$; (e) $[VO(acac)_2]/Mb$. Mb concentration was 5 μ M and molar ratio V/Mb was 3/1.

Fig. S5 Most stable adducts predicted by docking methods for the interaction of the VO(dhp)⁺ moiety with myoglobin: a) *SPY*-5-13-A-VO(dhp)(H₂O)₂ with His24 and His119; b) *SPY*-5-13-C-VO(dhp)(H₂O)₂ with His82 and Asp141 and c) *SPY*-5-13-C-VO(dhp)(H₂O)₂ with Glu83 and Asp141.

Fig. S6 Experimental (above) and calculated (below) isotopic pattern for the peak of $[VO(mim)_2]^{2-}$ revealed at m/z = 229.5 in the negative ESI-MS spectrum recorded on the system V^{IV}O²⁺/mim 1/2 (V concentration 50 μ M).

Fig. S7 Deconvoluted ESI-MS spectra recorded on the system containing $VO(ma)_2$ and myoglobin (50 μ M): molar ratio 3/1 (top), 5/1 (centre) and 10/1 (bottom). With **a** and **b** the fragments $VO(ma)^+$ and $VO(ma)_2$ are indicated. Mass is expressed in Da.

Fig. S8 Deconvoluted ESI-MS spectra recorded on the system containing $[VO(acac)_2]$ and myoglobin (50 μ M): molar ratio 3/1 (top) and 5/1 (bottom). With **a** and **b** the fragments VO(acac)⁺ and VO(acac)₂ are indicated. Mass is expressed in Da.

Fig. S9 High field region of the X-band anisotropic EPR spectra recorded on frozen solutions (120 K) containing: a) V^{IV}O²⁺/acac/MeIm 1/2/4; b) V^{IV}O²⁺/acac/Mb 1/2/1; c) V^{IV}O²⁺/acac/Mb 2/4/1; d) V^{IV}O²⁺/acac/Mb 4/8/1; e) V^{IV}O²⁺/acac/Mb 6/12/1; f) V^{IV}O²⁺/acac/Mb 8/16/1; g) V^{IV}O²⁺/acac/Mb 10/20/1 and h) V^{IV}O²⁺/acac 1/2. V^{IV}O²⁺ concentration was 1.0×10^{-3} M. I and the dash-dotted lines indicate the $M_{\rm I} = 7/2$ resonance of the species [VO(acac)₂].

Fig. S10 High field region of the X-band isotropic EPR spectra recorded on aqueous solutions (298 K) containing: a) V^{IV}O²⁺/acac 1/2 and b) V^{IV}O²⁺/acac/Mb 1/2/1. V^{IV}O²⁺ concentration was 1.0 × 10^{-3} M. I and the dash-dotted line indicate the $M_{\rm I} = -7/2$ and 7/2 resonances of the species [VO(acac)₂].

Fig. S11 Cluster distribution for the interaction of $[VO(acac)_2]$ with myoglobin. The six clusters are represented with different colors.

Scheme S1 Structures in aqueous solution and physiological pH of the bis-chelated V^{IVO} complexes formed by 1,2-dimethyl-3-hydroxy-4(1*H*)-pyridinonate, L-mimosinate, maltolate and acetylacetonate.

Scheme S2 Enantiomers of $[VO(dhp)(H_2O)_2]^+$ (above) and $[VO(ma)(H_2O)_2]^+$ (below).

Scheme S3 Possible isomers of the bis-chelated V^{IV}O complex formed by L-mimosinate.