Supporting Information

Decorating WSe₂ nanosheets with ultrafine Ru nanoparticles for boosting electrocatalytic hydrogen evolution in alkaline electrolyte

Yuanmeng Zhao,^{a†} Guixiang Mao,^{a†} Chaozhang Huang,^b Ping Cai,^{a*}

Gongzhen Cheng,^a and Wei Luo^{a*}

^aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China, Tel.: +86-27-68752366.

*Corresponding author. E-mail addresses: caiping@whu.edu.cn; wluo@whu.edu.cn

^bChina Tobacco Fujian Industrial Co., Ltd., Xiamen, 361022, P. R. China

Figure S1. The XRD patterns of Ru-WSe₂ nanocomposites with different contents of Ru and pure WSe₂.

Figure S2. TEM images of as-synthesized 0.35 wt% Ru-WSe₂.

Figure S3. TEM images of as-synthesized 4.25 wt% Ru-WSe₂.

Figure S4. TEM images of as-synthesized pure WSe₂.

Figure S5. The XRD patterns of Ru nanorods.

Figure S6. TEM images of as-synthesized Ru nanorods.

Figure S7. The equivalent electrical circuit. In the Nyquist plots, the first semi-circle refers to the resistance of the solution (R_s) and the second semi-circle refers to charge transfer resistance (R_{ct}) .

Figure S8. Electrochemical double layer capacitance curves on 1.93 wt% Ru-WSe₂ with different scan rates from 50 mV s⁻¹ to 10 mV s⁻¹ in 1.0 M KOH.

Figure S9. Electrochemical double layer capacitance curves on Ru nanorods with different scan rates from 50 mV s⁻¹ to 10 mV s⁻¹ in 1.0 M KOH.

Figure S10. Electrochemical double layer capacitance curves on WSe_2 with different scan rates from 50 mV s⁻¹ to 10 mV s⁻¹ in 1.0 M KOH.

Figure S11. XRD pattern of the 1.93 wt% Ru-WSe₂ nanosheets after chronopotentiometry test (* represents the peak of XC-72).

Figure S12. TEM image of the 1.93 wt% Ru-WSe $_2$ nanosheets after chronopotentiometry test.

Figure S13. The amount of hydrogen theoretically calculated and experimentally measured versus time for 1.93 wt% Ru-WSe₂ in 1.0 M KOH.

Raw material	Ru content in Ru-WSe ₂		
$Ru(acac)_3$ (mg)	Ru (wt%)		
4	0.35		
8	1.93		
16	4.25		

Table S1 The raw material of $Ru(acac)_3$ and the corresponding contents of Ru in Ru-

WSe₂ nanosheets.

Table S2 Comparison of representative TMDs-based catalysts in 1.0 M KOH.

Catalyst	Substrate	Loading (mg cm ⁻²)	$\eta_{10}/(mV)$	Reference
Ru-WSe ₂	GCE	0.45	73	This work
Co-WSe ₂ /MWNTs	GCE	0.25	241	1
MoSe ₂ -NiSe@carbon	GCE	0.28	180	2
CS-MS/rGO-C	GCE	0.57	215	3
MS-CS NTs	GCE	0.57	237	4
MoS ₂ /MoSe ₂ -0.5	GCE	0.204	235	5
Ni _{SA} -MoS ₂ /CC	carbon cloth	NM	95	6
2D-MoS ₂ /Co(OH) ₂	GCE	~0.285	128	7
Co ₉ S ₈ @MoS ₂	GCE	~0.4	143	8
CoNiSe ₂ @CoNi- LDHs/NF	nickel foam	10	106	9
NiSe/Ni ₃ Se ₂ /NF-12	nickel foam	5.7	92	10
Ni(OH) ₂ /MoS ₂	carbon cloth	4.8	80	11
MoWSe alloys	GCE	1	262	12

MoSe ₂ @Ni _{0.85} Se	nickel foam	6.48	117	13
c-CoSe ₂ /CC	carbon cloth	NM	190	14
CoS/MoS ₂	GCE	0.18	214	15
Co ₃ S ₄ /MoS ₂ /Ni ₂ P NTs	GCE	0.18	178	15
MoS ₂ /Ni ₃ S ₂	Nickel foam	9.7	110	16
Ni-MoS ₂	carbon cloth	0.89	98	17
Co ₉ S ₈ @MoS ₂ /CNFs	GCE	0.212	190	18

Reference

1 G. Zhang, X. Zheng, Q. Xu, J. Zhang, W. Liu and J. Chen, J. Mater. Chem. A, 2018, 6, 4793.

2 C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang, Z. Chen, Carbon, 2018, 139, 1.

3 B. Wang, Z. Wang, X. Wang, B. Zheng, W. Zhang and Y. Chen, J. Mater. Chem. A, 2018, 6, 12701.

4 X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang and Y. Chen, J. Mater. Chem. A, 2018, **6**, 7842.

5 Q. Zhou, G. Zhao, K. Rui, Y. Chen, X. Xu, S. X. Dou and W. Sun, Nanoscale, 2019, **11**, 717.

6 Q. Wang, Z. L. Zhao, S. Dong, D. He, M. J. Lawrence, S. Han, C. Cai, S. Xiang, P. Rodriguez, B. Xiang, Z. Wang, Y. Liang and M. Gu, Nano Energy, 2018, **53**, 458.

7 Z. Zhu, H. Yin, C. -T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H. -G. Yang, Z. Tang, D. Wang, X. -M. Chen and H. Zhao, Adv. Mater., 2018, **30**, 1801171.

8 J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, and M. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 1678.

9 Y. Yang, W. Zhang, Y. Xiao, Z. Shi, X. Cao, Y. Tang and Q. Gao, Appl. Catal. B-Environ., 2019, **242**, 132.

10 F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye and J. Shen, Adv. Mater. Interfaces, 2018, **5**, 1701507.

11 B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao and J. Jiang, Nano Energy, 2017, **37**, 74.

12 O. E. Meiron, V. Kuraganti, I. Hod, R. Bar-Ziv and M. Bar-Sadan, Nanoscale, 2017, 9, 13998.

13 C. Wang, P. Zhang, J. Lei, W. Dong and J. Wang, Electrochim. Acta, 2017, 246, 712.

14 P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu and Y. Xie, Adv. Mater., 2016, **28**, 7527.

15 H. Lin, H. Li, Y. Li, J. Liu, X. Wang and L. Wang, J. Mater. Chem. A, 2017, 5, 25410.

16 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Angew. Chem. Int. Ed., 2016, **55**, 6702.

17 J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, Energy Environ. Sci., 2016, 9, 2789.

18 H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X. Zhang, Adv. Mater., 2015, **27**, 4752.