Supplementary Information

Facile and scalable preparation of 3D SnO₂/holey graphene composite frameworks for stable lithium storage at high mass loading level

Junfei Liang, * Hongtao Sun, Yuqi Xu, Tengxiao Liu, Hua Wang, * Hantao Liu, and Lin Guo*

Table S1 Comparison of energy storage performance metrics for various SnO_2 and Si-based electrode materials

Materials	Mass Loading	Current Density	Area capacity	Ref.
	$(mg cm^{-2})$	$(mA cm^{-2})$	$(mA h cm^{-2})$	
SHGF	4	2	2.9 (1000 cycle)	Our work
	4	8	2.3 (2000 cycle)	
SnO ₂ /3D graphene	1	0.2	0.798 (100cycle)	1
SnO ₂ Hollow	1	0.1	0.746 (50cyle)	2
Microspheres				
Ultrasmall SnO ₂	1.64	3.28	0.443 (2000cyles)	3
nanoparticles@C				
Carbon-Coated	1.5	0.75	0.491 (100 cycle)	4
SnO ₂ Submicrobox				
Si secondary	1.93	0.5	2 (160 cycle)	5
structure	1.30	0.5	1.2 (350 cycle)	
	0.64	0.5	0.7 (700 cycle)	
Mesoporous Si	2	0.75	1.5 (300 cycle)	6
sponge				

Notes and references

1 J. –I. Lee, J. Song, Y. Cha, S. Fu, C. Zhu, X. Li, Y. Lin and M. –K. Song, *Nano Res.*, 2017, **10**, 4398.

- 2 J. Zhang, H. Ren, J. Wang, J. Qi, R. Yu, D. Wang and Y. Liu, *J. Mater. Chem. A*, 2016, **4**, 17673.
- 3 A. Jahel, C. M. Ghimbeu, L. Monconduit and C. Vix-Guterl, Adv. Energy Mater., 2014, 4, 1400025.
- 4 X. Zhou, L. Yu and X. W. Lou, Adv. Energy Mater., 2016, 6, 1600451.
- 5 N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H. –W. Lee, W. Zhao and Y. Cui, Nat. Nanotechnol., 2014, 9, 187.
- 6 X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J. G. Zhang and J. Liu, Nat. Commun., 2014, 5, 4105.