Electronic Supplementary Information (ESI) for Inorganic Chemistry Frontiers

Poly-phenylenediamine-derived Atomically Dispersed Ni Sites for Electroreduction of CO₂ to CO

Yonglong Zheng, ^{a,b} Jianyu Han, ^a Leta Takele, ^{a,b} Feng Xie, ^{a,c} Yin Zhang, ^{a,b} Jiqing Sun, ^{a,b} Bing Han, ^a Jing Chen, ^a Yan Gao, *^{a,b} and Zhiyong Tang ^{a,b}

^aCAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^cAdvanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

Corresponding authors at: National Center for Nanoscience and Technology. No. 11 Beiyitiao, Zhongguancun, Beijing, P.R.China. Tel: +86 01082545659 E-mail address: gaoyan@nanoctr.cn

Figure S1. Schematic illustration of the synthesis of Ni-C-N catalyst.

Figure S2 TEM images for the catalyst (a) Ni-C-N (b) N-C

Figure S3. SEM images with different resolution for the catalyst (a) (b) Ni-C-N (b) (d)

Figure S4 (a) SEM images for Ni-C-N in micrometre size (b) TEM image of SiO_2

template.

Figure S5. XRD patterns of Ni-C-N and N-C.

Figure S6. Raman spectra of Ni-C-N and N-C.

Figure S7. XPS survey spectra of N-C, Ni-C-N, and NiPc.

Figure S8. The second derivative spectra obtained from Ni K-edge XANES spectra.

Figure S9. ¹H NMR spectra of the liquid products after 4 h CO₂ reduction electrolysis at -0.85 V *vs.* RHE for Ni-C-N

Figure S10. Dependence of FE on applied potential for N-C.

Figure S11. TOF of Ni-C-N compared with reported SACs for electroreduction of CO_2 to CO. The number in the figure represents the number of quoted references.

Table S1. EXAFS fitting result of the Ni-C-N catalyst.

				Debye-Waller		
Sample	Shell	Ν	R/Å (EXAFS)	factor $\Delta \sigma^2 (\times 10^{-3})$	$\Delta E_0(eV)$	R factor
				Å ²)		
Ni-C-N	Ni-N	4	1.847	7 ± 0.59	4.47	0.00002

The data range adopted for data fitting in k-space (Δk) and R space (ΔR) are 2-11.426 Å⁻¹and 1-3 Å, respectively.

N, coordination number; R, interatomic distance; EXAFS, extended X-ray absorption fine structure

Table S2. Comparisons of Ni-C-N catalyst with reported SACs for electroreduction of CO₂ to CO.

Catalysts	CO FE %	j(mA cm ⁻	Potential of	Electroly	Reference
		²)	highest FE	te	
Ni-C-N	90	11.6	-0.8 (vs. RHE)	0.5M	This work
				NaHCO ₃	
Ni SAs/N-C	70.3	10.48	-1.0 (vs. RHE)	0.5M	1
				NaHCO ₃	
ZnNx/C	95	4.8	-0.43 (vs. RHE)	0.5M	2
				NaHCO ₃	
A-Ni-NSG	97	36.5	-0.72 (vs. RHE)	0.5M	3
				NaHCO ₃	
NiSA-N-CNTs	91.3	23.5	-0.7 (vs. RHE)	0.5M	4
				NaHCO ₃	
Co-N ₂	94	18.1	-0.63 (vs. RHE)	0.5M	5
				NaHCO ₃	
C-Zn ₁ Ni ₄	98	22	-0.83 (vs. RHE)	0.5M	6
				NaHCO ₃	

NiN-GS	93.2	4	-0.82 (vs. RHE)	0.5M	7
				NaHCO ₃	
Ni-NG	95	11	-0.73 (vs. RHE)	0.5M	8
				NaHCO ₃	
Ni-N ₄ -C	99	28.6	-0.81 (vs. RHE)	0.5M	9
				NaHCO ₃	
Ni-N-MEGO	92.1	26.8	-0.70 (vs. RHE)	0.5M	10
				NaHCO ₃	
Ni-NC	89%	30	-0.85 (vs. RHE)	0.5M	11
				NaHCO ₃	

3. References

- 1. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, *J. Am. Chem. Soc.*, 2017, **139**, 8078-8081.
- F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu and W. Xu, Angew. Chem. Int. Ed., 2018, 57, 12303-12307.
- H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang and B. Liu, *Nat. Energy*, 2018, 3, 140-147.
- Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders, M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. De Marco, H.-M. Cheng, S.-Z. Yang and S. P. Jiang, *Adv. Mater.*, 2018, **30**, 1706287.

- X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang,
 W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu and Y. Li, *Angew. Chem. Int. Ed.*,
 2018, **130**, 1962-1966.
- C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang and X. Bao, *Energy Environ. Sci.*, 2018, **11**, 1204-1210.
- K. Jiang, S. Siahrostami, A. J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J. K. Nørskov, Y. Cui and H. Wang, *Chem*, 2017, 3, 950-960.
- K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer and H. Wang, *Energy Environ. Sci.*, 2018, 11, 893-903.
- X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu and Y. Xie, *J. Am. Chem. Soc.*, 2017, **139**, 14889-14892.
- Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S.-Z. Yang, C. Liu, J. G. Chen and S. P. Jiang, *Appl Catal B*, 2019, **243**, 294-303.
- L. Zhao, Y. Zhang, L.-B. Huang, X.-Z. Liu, Q.-H. Zhang, C. He, Z.-Y. Wu, L.-J. Zhang, J. Wu, W. Yang, L. Gu, J.-S. Hu and L.-J. Wan, *Nat Commun*, 2019, **10**, 1278.