Supporting Information

Facile development of CoAl-LDHs/RGO nanocomposites as photocatalysts for efficient hydrogen generation from water splitting under visible-light irradiation

Anbu Kumaresan,^{#a, b} Shuo Yang,^{#a, b} Kun Zhao, ^a Nafees Ahamad, ^{a, b} Jiyu Zhou, ^{a, c} Zhong Zheng^{*}, ^a Yuan Zhang, ^c Yan Gao^{*}, ^a Huiqiong Zhou^{*}, ^a Zhiyong Tang^a

^aCAS Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology No.11 ZhongGuanCun Bei Yi Tiao, Beijing, P. R. China

^bUniversity of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China

A.kumaresan and S.yang equally contributed this work

^cSchool of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China

Email: zhengz@nanoctr.cn, gaoyan@nanoctr.cn, zhouhq@nanoctr.cn

Fig. S1 EDX spectra of the pure RGO, pure CoAl-LDHs and optimized CoAl-LDHs/RGO nanocomposites

Fig. S2 XRD pattern of GO

Table S1 Photocatalytic H₂ evolution performance of the as-synthesized different samples in presence of Ru(bpy)₃]Cl₂·6H₂O photosensitizer under visible-light irradiation($\lambda \ge 420$ nm).

S.No	Photocatalyst	Ratio of Grams	Solvent	H ₂ evolution rate (μmol h ⁻¹ g ⁻¹)
1	-	-	CH ₃ CN+ TEOA +H ₂ O	0
2	Pure CoAl-LDHs	0.8	CH ₃ CN+TEOA	21.74
3	Pure CoAl-LDHs	0.8	CH ₃ CN+ TEOA +H ₂ O	430.14
4	Pure RGO	0.055	CH ₃ CN+ TEOA +H ₂ O	0
5	CoAl-LDHs/RGO-35	0.8:0.039	CH ₃ CN+ TEOA +H ₂ O	1310.20
6	CoAl-LDHs/RGO-50	0.8:0.055	CH ₃ CN+ TEOA +H ₂ O	1571.84
7	CoAl-LDHs/RGO-75	0.8:0.075	CH ₃ CN+ TEOA +H ₂ O	708.167
8	CoAl-LDHs/RGO-100	0.8:0.105	CH ₃ CN+ TEOA +H ₂ O	544.18

The quantum efficiency of H_2 evolution was estimated using Equation (1) (Ref: Angew. Chem.

2016, 128, 1824 –1828):

$$\Phi_{H_2} = 2 \times \frac{\text{moles of hydrogen evolved}}{\text{moles of the incident photons}}$$
Equation (1)

The external quantum efficiency values for H_2 generation were determined at 450 nm using a band pass filter with the same watersplitting experimental setup. The flux of incident photons from the power was measured by a power meter (PM100D, Thorlabs). The lamp intensity at 450 nm was 37.3 mW/cm², the illuminatied area ws 18.08 cm², and the incident photon flux was calculated to be $5.50*10^{21}$ h⁻¹. The quantum efficiency of H₂ generated at 450 nm for pure CoAl-LDHs, RGO, (CR-1) CoAl-LDHs/RGO-35, (CR-2) CoAl-LDHs/RGO-50, (CR-3) CoAl-LDHs/RGO-75, (CR-4) CoAl-LDHs/RGO-100 were estimated as followed: 0.26%, 0.81%, 0.98%, 0.43%, 0.32%.