Supporting information

Stellerite seeded facile synthesis of zeolite heulandite with

exceptional aqueous Cd²⁺ capture performance

Yunzheng Wang^a, Pu Bai^a, Zhuwei Jin^a, Yan Li^a, Yaorui Li^{a,d}, Wei Shi^b, Xue Zhou^c, Jun Xu^c, Wenfu Yan^{*a}, and Ruren Xu^a

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. Email: yanw@jlu.edu.cn

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China

^cState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

^{*d*}College of Nuclear Science and Technology, Harbin Engineering University, 145 Nantong Street, Harbin 150001, P.R. China

* Corresponding author: yanw@jlu.edu.cn

Characterization of zeolite materials

Fig. S1 XRD pattern of (A) natural stellerite, (B) natural clinoptilolite and synthetic clinoptilolite. The simulated patterns are also included

Fig. S2 TG curves of stellerite, N-Cli, S-Cli and S-Heu

Table S1 Elemental analysis of N-Cli, S-Cli, and S-Heu

Components (%)	N-Cli ^a	Stibite ^a	S-Cli ^b	S-Heu ^b
SiO ₂	68.1	63.8	63.9	60.9
AI_2O_3	12.3	15.8	11.8	14.0
Na ₂ O	5.2	0.3	3.4	9.36
K ₂ O	1.2	0.3	6.6	-
CaO	0.9	10.0	-	-
MgO	0.6	0.2	-	-
H ₂ O ^c	12.2	12.3	14.5	16.0
Si/Al	4.7	3.4	4.6	3.7

^a determined by XRF. ^b determined by ICP-OES. ^c determined by TG