Supporting Information

Oxygen Vacancies Confined in Co₃O₄ Quantum Dots for Promoted Oxygen Evolution Electrocatalysis

Yun Tong,^{*} Hainiao Mao, Yanglei Xu and Jiyang Liu

Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha High Education Zone, Hangzhou 310018, (P. R. China)

Correspondence and requests for materials should be addressed to Y. Tong (E-mail: tongyun@mail.ustc.edu.cn)

Table of Contents

S1. Crystal structure of pristine Co ₃ O ₄ and oxygen defected Co ₃ O ₄ quantum dots	3
S2. TEM image and size distribution of P-Co ₃ O ₄ quantum dots	3
S3. HRTEM image of P-Co ₃ O ₄ quantum dots	4
S4. The XRD patterns of various Co ₃ O ₄ products at different temperature	
S5. X-ray photoelectron spectroscopy investigation of P-Co ₃ O ₄ sample	5
S6. X-ray photoelectron spectroscopy investigation of Co ₃ O ₄ -200 S7. The Co 2p XPS spectra of various Co ₃ O ₄ samples	5 6
S9. The stability test of Co ₃ O ₄ -170 for OER process	7

S1. Crystal structure of pristine Co₃O₄ and oxygen defected Co₃O₄ quantum dots

Figure S1 (a) The crystal structure of $p-Co_3O_4$ sample. (b) The schematic diagram of oxygen defects in the framework of Co_3O_4 material.

S2. TEM image and size distribution of p-Co₃O₄ quantum dots

Figure S2 (a) TEM image of the obtained pristine Co_3O_4 quantum dots. (b) Distribution diagram of particle size of pristine Co_3O_4 quantum dots.

S3. HRTEM image of p-Co₃O₄ quantum dots

Figure S3 The HRTEM image of synthesized pristine Co₃O₄ quantum dots.

S4. The XRD patterns of various Co₃O₄ products at different temperature

Figure S4 a-b) XRD patterns of as-obtained various Co_3O_4 quantum dots that synthesized at different treatment temperature.

S5. X-ray photoelectron spectroscopy investigation of p-Co₃O₄ sample

Figure S5 The XPS survey of as-obtained p-Co₃O₄ products.

S6. X-ray photoelectron spectroscopy investigation of Co₃O₄-200

Figure S6 The XPS survey of as-obtained Co₃O₄-200 products.

S7. The Co 2p XPS spectra of various Co₃O₄ samples

Figure S7 The Co2p XPS survey of as-obtained Co₃O₄-200, Co₃O₄-210 and Co₃O₄-250 products.

S8. The stability test of Co₃O₄-200 for OER process

Figure S8 Chronoamperometric response of Co_3O_4 -200 catalyst at the applied potential of 0.55V vs. Ag/AgCl.

S9. The stability test of Co₃O₄-170 for OER process

Figure S9 Chronoamperometric response of Co_3O_4 -170 catalyst at the applied potential of 0.55V vs. Ag/AgCl.