## **Supporting Information**

A Ni<sup>II</sup> Complex of Tetradentate Salen Ligand H<sub>2</sub>L<sup>NH</sup><sub>2</sub> Comprising an Anchoring –NH<sub>2</sub> Group: Synthesis, Characterization and Electrocatalytic CO<sub>2</sub> Reduction to Alcohols

Paulomi Bose<sup>a</sup>, Chandan Mukherjee<sup>a,b,\*</sup> and Animes Kumar Golder<sup>a,c</sup>

<sup>*a*</sup> Centre for the Environment, Indian Institute of Technology Guwahati, Assam-781039, INDIA <sup>*b*</sup> Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, INDIA. Email: cmukherjee@iitg.ac.in., Phone: +91-361-2582327, Fax + 91-361-2582349. <sup>*c*</sup> Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039, INDIA.

| Contents                                                                        | Page |
|---------------------------------------------------------------------------------|------|
| Comparison of the formation of ERC products and FE using various                | 2    |
| electrocatalysts in ERC                                                         |      |
| Calculated TON and TOF of the formation of ERC products using Ni                | 3    |
| Complex in our study.                                                           |      |
| Experimental and simulated mass spectrum of synthesized ligand $H_2L_2^{NH}$    | 3    |
| Experimental and simulated mass spectrum of complex $1 [C_{20}H_{15}N_3O_2N_1]$ | 4    |
| + H] before (a) and after the ERC reaction (b).                                 |      |
| <sup>1</sup> H NMR spectrum of synthesized ligand $H_2L_2^{NH}$                 | 5    |
| FTIR spectrum of (a) ligand $H_2L^{NH}_2$ and (b) corresponding Ni complex      | 5-6  |
| (1)                                                                             |      |
| FTIR spectrum of electrode material after ERC reaction                          | 6    |
| Image of the custom made H type divided electrochemical cell                    | 7    |
| Morphology and EDX analysis of $Ni^{II}L^{NH}_{2}$ /graphite WE and bare        | 8    |
| graphite electrode                                                              |      |

| Schematic diagrams of the representation of redox character of the salen                                                | 9  |
|-------------------------------------------------------------------------------------------------------------------------|----|
| metal complex during electrolysis of CO <sub>2</sub>                                                                    |    |
| GC chromatogram showing liquid and gaseous product formation during                                                     | 10 |
| ERC                                                                                                                     |    |
| CV curve at a scan rate of 30 mV s <sup><math>-1</math></sup> during ERC at Ni <sup>II</sup> LNH <sub>2</sub> /graphite | 11 |
| WEs CO <sub>2</sub> saturation after 1 hour of electrolysis                                                             |    |
| CV curves at a scan rate of 100 mV $s^{-1}$ at glassy carbon WE in1 mM                                                  | 11 |
| $Ni^{II}L^{NH}_{2}$ as analyte at (a) $N_{2}$ saturation and (b) $CO_{2}$ saturation                                    |    |

**Table S1:** Comparison of the formation of ERC products and FE using variouselectrocatalysts in ERC.

| Catalysts                                                          | Reduction                               | Electrolyte                                       | Products                                                                              | References       |
|--------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|------------------|
| Ni metal                                                           | $E_{cat} = -1.84 \text{ V vs.}$ Ag/AgCl | 0.05 M KHCO <sub>3</sub>                          | CO (21.0),<br>HCOOH<br>(13.7)                                                         | (1)              |
| Nitrogen-doped<br>nanodiamond                                      | $E_{cat} = -1.67$ V vs.<br>Ag/AgCl      | 0.5 M NaHCO <sub>3</sub>                          | Acetate and<br>Formate (90)                                                           | (2)              |
| Au foil catalysts                                                  | $E_{cat} = -1.35$ V vs.<br>Ag/AgCl      | 0.1 M KHCO <sub>3</sub>                           | CO (97)                                                                               | (3)              |
| di-nuclear nickel complex                                          | $E_{cat} = -1.16$ V vs. NHE             | 4 : 1 CH <sub>3</sub> CN/H <sub>2</sub> O         | CO (95)                                                                               | (4)              |
| $ \begin{array}{l} M^{n+}(cyclam)Cl_n]\\ (M=Ni^{2+}) \end{array} $ | $E_{cat} = -1.4$ V vs.<br>Ag/AgCl       | BMImBF <sub>4</sub> and<br>BMImNTf <sub>2</sub>   | CO (95.2)                                                                             | (5)              |
| $ \begin{array}{l} M^{n+}(cyclam)Cl_n]\\ (M=Co^{2+}) \end{array} $ | $E_{cat} = -1.4$ V vs.<br>Ag/AgCl       | BMImBF <sub>4</sub> and<br>BMImNTf <sub>2</sub>   | CO (85.9)                                                                             | (5)              |
| Molecular<br>polypyridyl nickel<br>complex                         | $E_{cat} = -1.86$ V vs.<br>Ag/AgCl      | MeCN solution<br>with 0.1 M<br>TBAPF <sub>6</sub> | CO (91)                                                                               | (6)              |
| Salen Ni- complex                                                  | $E_{cat} = -1.80$ V vs.<br>Ag/AgCl      | 0.5 M KHCO <sub>3</sub>                           | HCOOH (4.7),<br>CH <sub>3</sub> OH (11.4),<br>C <sub>2</sub> H <sub>5</sub> OH (28.6) | Present<br>study |

| Product                          | V vs. Ag/AgCl | <b>TOF</b> (S <sup>-1</sup> ) | TON  |
|----------------------------------|---------------|-------------------------------|------|
| C <sub>2</sub> H <sub>5</sub> OH | -1.8          | 2.1                           | 7560 |
| HCOOH                            | -1.8          | 0.33                          | 1214 |
| CH <sub>3</sub> CHO              | -1.8          | 0.3                           | 1270 |
| CH <sub>3</sub> OH               | -1.8          | 0.8                           | 3060 |

**Table S2:** Calculated TON and TOF of the formation of ERC products using Ni Complex 1

 in our study.



Figure S1: Experimental and simulated mass spectrum of synthesized ligand  $H_2L_2^{NH}$ [C<sub>20</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub> + H].



**Figure S2**: Experimental and simulated mass spectrum of complex 1  $[C_{20}H_{15}N_3O_2N_i + H]$  before (a) and after the ERC reaction (b).



Figure S3: <sup>1</sup>H NMR spectrum of synthesized ligand  $H_2L_2^{NH}$  (in CDCl<sub>3</sub>).





Figure S4: FTIR spectrum of (a) ligand  $H_2L_2^{NH}$  and (b) corresponding Ni complex (1).



Figure S5: FTIR spectrum of electrode material after ERC reaction.



**Figure S6**: Digital image of the custom made H type divided electrochemical cell, WE= Working electrode, CE = Counter electrode, and RE= reference electrode.



**Figure S7:** Morphology and EDX analysis of  $Ni^{II}L^{NH}_{2}$  /graphite WE. (a) FE-SEM micrograph of bare graphite WE surface before catalyst coating, (b) Elemental abundance of the bare graphite WE (Fig. 1a), (c) FE-SEM micrograph of fresh surface of  $Ni^{II}L^{NH}_{2}$ /graphite WE, (d) Elemental abundance of  $Ni^{II}L^{NH}_{2}$ /graphite WE and (e) Elemental distribution of  $Ni^{II}L^{NH}_{2}$ /graphite WE.



**Figure S8:** Schematic diagrams of the representation of redox character of the salen metal complex during electrolysis of CO<sub>2</sub>.



**Figure S9:** Gas chromatograms showing product formation during ERC using (a) chromatograph of liquid sample only with graphite electrode without the catalyst, (b) chromatograph of liquid sample using  $Ni^{II}L^{NH}_{2}$ /graphite electrode in N<sub>2</sub> atmosphere, (c) chromatograph of gaseous sample using  $Ni^{II}L^{NH}_{2}$ /graphite electrode in N<sub>2</sub> atmosphere, and (d) chromatograph of liquid sample using  $Ni^{II}L^{NH}_{2}$ /graphite electrode with CO<sub>2</sub> atmosphere after 1 h of electrolysis at -1.8 V vs. Ag/AgCl. RT= 2.94 min for CH<sub>3</sub>CHO, RT = 4.068 for CH<sub>3</sub>OH, RT= 5.2 for C<sub>2</sub>H<sub>5</sub>OH and RT= 21.5 is for HCOOH using  $Ni^{II}L^{NH}_{2}$ /graphite WE in Fig. S7b. RT = 1.3 min is for H<sub>2</sub> and RT = 4.125 min is for N<sub>2</sub> in Fig. S7d.



**Figure S10:** CV curve at a scan rate of 30 mV s<sup>-1</sup> during ERC at **Ni<sup>II</sup>L<sup>NH</sup>**<sub>2</sub> /graphite WEs CO<sub>2</sub> saturation after 1 hour of electrolysis. Experimental condition: Electrolyte 0.5 mM KHCO<sub>3</sub>, catholyte and anolyte 120 mL each and ~45 min initial pre-saturation time.



**Figure S11:** CV curves at a scan rate of 100 mV s<sup>-1</sup> at glassy carbon WE in1 mM Ni<sup>II</sup>L<sup>NH</sup><sub>2</sub> complex as analyte at (a) N<sub>2</sub> saturation and (b) CO<sub>2</sub> saturation. Experimental condition: Electrolyte 0.1 M TBAPF<sub>6</sub> in CH<sub>3</sub>CN solution, Pt wire as CE and Ag/AgCl as RE.

## References

- M. Azuma, K. Hashimoto and M. Hiramoto, J. Electrochem. Soc, 1990, **137**, 1772-1778.
- 2 Y. Liu, S. Chen, X. Quan and H. Yu, J. Am. Chem. Soc, 2015, **137**, 11631–11636.
- E. R. Cave, J. H. Montoya, K. P. Kuhl, D. N. Abram, T. Hatsukade, C. Shi, C. Hahn,
  K. Nørskov and T. F. Jaramillo, Phys. Chem. Chem. Phys, 2017, 19, 15856–15863.
- 4 L. Cao, H. Huang, J. Wang, D. Zhong and T. Lu, Green Chem, 2018, **20**, 798–803.
- J. Honores, D. Quezada, M. García, K. Calfumán, J. P. Muena, M. J. Aguirre, M. C. Arévalo and M. Isaacs, *Green Chem.*, 2017, 19, 1155–1162.
- L. E. Lieske, A. L. Rheingold and C. W. Machan, Sustain. Energy Fuels, 2018, 2, 1269–1277.